基于最小熵法的改进ISAR成像突出点处理

Guanglong Wang, Daiying Zhou, Yuxing Bo
{"title":"基于最小熵法的改进ISAR成像突出点处理","authors":"Guanglong Wang, Daiying Zhou, Yuxing Bo","doi":"10.1109/ISCID.2013.71","DOIUrl":null,"url":null,"abstract":"In this paper, the modified prominent point processing (MPPP) approach for the phase compensation in inverse synthetic aperture radar (ISAR) imaging is proposed. It applies the minimum entropy method (MEM) to find the prominent point cell used for the phase calibration. After minusing the measured phase value of prominent point range cell from all the range bins belonged to the same echo, a well-focused ISAR image can be obtained by combining all the range bins. Compared to the PPP algorithm, the MPPP method can find the better prominent point unit utilized for the phase correction, which will lead to a more focused ISAR image after the phase compensation. The simulation result proves that the proposed approach can enhance the clarity and focusing of the ISAR image.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modified Prominent Point Processing in ISAR Imaging Based on Minimum Entropy Method\",\"authors\":\"Guanglong Wang, Daiying Zhou, Yuxing Bo\",\"doi\":\"10.1109/ISCID.2013.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the modified prominent point processing (MPPP) approach for the phase compensation in inverse synthetic aperture radar (ISAR) imaging is proposed. It applies the minimum entropy method (MEM) to find the prominent point cell used for the phase calibration. After minusing the measured phase value of prominent point range cell from all the range bins belonged to the same echo, a well-focused ISAR image can be obtained by combining all the range bins. Compared to the PPP algorithm, the MPPP method can find the better prominent point unit utilized for the phase correction, which will lead to a more focused ISAR image after the phase compensation. The simulation result proves that the proposed approach can enhance the clarity and focusing of the ISAR image.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种改进的突出点处理(MPPP)方法,用于逆合成孔径雷达(ISAR)成像中的相位补偿。采用最小熵法(MEM)寻找用于相位校准的突出点单元。将属于同一回波的所有距离仓中突出点距离单元的相位值相减后,将所有距离仓组合即可得到一幅聚焦良好的ISAR图像。与PPP算法相比,MPPP方法可以找到更好的突出点单元用于相位校正,从而使相位补偿后的ISAR图像更加聚焦。仿真结果表明,该方法可以提高ISAR图像的清晰度和聚焦效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Prominent Point Processing in ISAR Imaging Based on Minimum Entropy Method
In this paper, the modified prominent point processing (MPPP) approach for the phase compensation in inverse synthetic aperture radar (ISAR) imaging is proposed. It applies the minimum entropy method (MEM) to find the prominent point cell used for the phase calibration. After minusing the measured phase value of prominent point range cell from all the range bins belonged to the same echo, a well-focused ISAR image can be obtained by combining all the range bins. Compared to the PPP algorithm, the MPPP method can find the better prominent point unit utilized for the phase correction, which will lead to a more focused ISAR image after the phase compensation. The simulation result proves that the proposed approach can enhance the clarity and focusing of the ISAR image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1