A. Afsharinejad, A. Davy, B. Jennings, S. Balasubramaniam
{"title":"基于ga的石墨烯纳米通信网络频率选择策略","authors":"A. Afsharinejad, A. Davy, B. Jennings, S. Balasubramaniam","doi":"10.1109/ICC.2014.6883887","DOIUrl":null,"url":null,"abstract":"We propose and evaluate a number of of frequency selection strategies for nano-scale devices using graphene-based nano-antennas (“graphennas”), which operate in the Terahertz band. The strategies take into account the limitations of Terahertz channel and aim to optimize the overall network transmission rate of a network of nano-devices, while maximizing various objectives. We investigate the trade-off between cases where: 1) frequency duplication within the network is allowed or prevented; 2) limiting the spread of frequencies over the entire Terahertz range is required; and 3) balancing the load between the network sink nodes is required. We compare the network performance for the different objectives proposed against a random frequency selection strategy. Our simulation study demonstrates the efficiency of the proposed algorithms and indicates their usefulness in different application scenarios.","PeriodicalId":444628,"journal":{"name":"2014 IEEE International Conference on Communications (ICC)","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"GA-based frequency selection strategies for graphene-based nano-communication networks\",\"authors\":\"A. Afsharinejad, A. Davy, B. Jennings, S. Balasubramaniam\",\"doi\":\"10.1109/ICC.2014.6883887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and evaluate a number of of frequency selection strategies for nano-scale devices using graphene-based nano-antennas (“graphennas”), which operate in the Terahertz band. The strategies take into account the limitations of Terahertz channel and aim to optimize the overall network transmission rate of a network of nano-devices, while maximizing various objectives. We investigate the trade-off between cases where: 1) frequency duplication within the network is allowed or prevented; 2) limiting the spread of frequencies over the entire Terahertz range is required; and 3) balancing the load between the network sink nodes is required. We compare the network performance for the different objectives proposed against a random frequency selection strategy. Our simulation study demonstrates the efficiency of the proposed algorithms and indicates their usefulness in different application scenarios.\",\"PeriodicalId\":444628,\"journal\":{\"name\":\"2014 IEEE International Conference on Communications (ICC)\",\"volume\":\"244 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2014.6883887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2014.6883887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GA-based frequency selection strategies for graphene-based nano-communication networks
We propose and evaluate a number of of frequency selection strategies for nano-scale devices using graphene-based nano-antennas (“graphennas”), which operate in the Terahertz band. The strategies take into account the limitations of Terahertz channel and aim to optimize the overall network transmission rate of a network of nano-devices, while maximizing various objectives. We investigate the trade-off between cases where: 1) frequency duplication within the network is allowed or prevented; 2) limiting the spread of frequencies over the entire Terahertz range is required; and 3) balancing the load between the network sink nodes is required. We compare the network performance for the different objectives proposed against a random frequency selection strategy. Our simulation study demonstrates the efficiency of the proposed algorithms and indicates their usefulness in different application scenarios.