Z. Kedem, V. Mooney, Kirthi Krishna Muntimadugu, K. Palem
{"title":"近似纹波进位加法器的能量误差权衡方法","authors":"Z. Kedem, V. Mooney, Kirthi Krishna Muntimadugu, K. Palem","doi":"10.1109/ISLPED.2011.5993638","DOIUrl":null,"url":null,"abstract":"Given a 16-bit or 32-bit overclocked ripple-carry adder, we minimize error by allocating multiple supply voltages to the gates. We solve the error minimization problem for a fixed energy budget using a binned geometric program solution (BGPS). A solution found via BGPS outperforms the two best prior approaches, uniform voltage scaling and biased voltage scaling, reducing error by as much as a factor of 2.58X and by a median of 1.58X in 90nm transistor technology.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"An approach to energy-error tradeoffs in approximate ripple carry adders\",\"authors\":\"Z. Kedem, V. Mooney, Kirthi Krishna Muntimadugu, K. Palem\",\"doi\":\"10.1109/ISLPED.2011.5993638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a 16-bit or 32-bit overclocked ripple-carry adder, we minimize error by allocating multiple supply voltages to the gates. We solve the error minimization problem for a fixed energy budget using a binned geometric program solution (BGPS). A solution found via BGPS outperforms the two best prior approaches, uniform voltage scaling and biased voltage scaling, reducing error by as much as a factor of 2.58X and by a median of 1.58X in 90nm transistor technology.\",\"PeriodicalId\":117694,\"journal\":{\"name\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"volume\":\"2004 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2011.5993638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach to energy-error tradeoffs in approximate ripple carry adders
Given a 16-bit or 32-bit overclocked ripple-carry adder, we minimize error by allocating multiple supply voltages to the gates. We solve the error minimization problem for a fixed energy budget using a binned geometric program solution (BGPS). A solution found via BGPS outperforms the two best prior approaches, uniform voltage scaling and biased voltage scaling, reducing error by as much as a factor of 2.58X and by a median of 1.58X in 90nm transistor technology.