针对雾计算环境,优化了基于模糊聚类的资源调度和动态负载均衡算法

Bikash Sarma, Rajagopal Kumar, T. Tuithung
{"title":"针对雾计算环境,优化了基于模糊聚类的资源调度和动态负载均衡算法","authors":"Bikash Sarma, Rajagopal Kumar, T. Tuithung","doi":"10.1504/ijcse.2021.117015","DOIUrl":null,"url":null,"abstract":"An influential and standard tool, fog computing performs applications of internet of things (IoT) and it is the cloud computing's extended version. In the network of edge computing, the applications of IoT are possibly implemented by fog computing which is an emerging technology. Load on cloud is minimised with proper resource allocation using fog computing methods. Throughput maximisation, available resources optimisation, response time reduction, and elimination of overloaded single resource are the goal of load balancing algorithm. This paper suggests an optimised fuzzy clustering-based resource scheduling and dynamic load balancing (OFCRS-DLB) procedure for resource scheduling and load balancing in fog computing. For resource scheduling, this paper recommends an enhanced form of fast fuzzy C-means (FFCM) with crow search optimisation (CSO) algorithm in fog computing. Finally, the load balancing is done using scalability decision technique. The proficiency of the recommended technique is obtained by comparing with other evolutionary methods.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimised fuzzy clustering-based resource scheduling and dynamic load balancing algorithm for fog computing environment\",\"authors\":\"Bikash Sarma, Rajagopal Kumar, T. Tuithung\",\"doi\":\"10.1504/ijcse.2021.117015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An influential and standard tool, fog computing performs applications of internet of things (IoT) and it is the cloud computing's extended version. In the network of edge computing, the applications of IoT are possibly implemented by fog computing which is an emerging technology. Load on cloud is minimised with proper resource allocation using fog computing methods. Throughput maximisation, available resources optimisation, response time reduction, and elimination of overloaded single resource are the goal of load balancing algorithm. This paper suggests an optimised fuzzy clustering-based resource scheduling and dynamic load balancing (OFCRS-DLB) procedure for resource scheduling and load balancing in fog computing. For resource scheduling, this paper recommends an enhanced form of fast fuzzy C-means (FFCM) with crow search optimisation (CSO) algorithm in fog computing. Finally, the load balancing is done using scalability decision technique. The proficiency of the recommended technique is obtained by comparing with other evolutionary methods.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2021.117015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2021.117015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

雾计算是一种有影响力的标准工具,它执行物联网(IoT)的应用,是云计算的扩展版本。在边缘计算网络中,物联网的应用有可能通过雾计算这一新兴技术来实现。使用雾计算方法通过适当的资源分配将云上的负载最小化。吞吐量最大化、可用资源优化、响应时间缩短和消除单个资源过载是负载平衡算法的目标。针对雾计算中的资源调度和负载均衡问题,提出了一种优化的基于模糊聚类的资源调度和动态负载均衡(OFCRS-DLB)方法。针对雾计算中的资源调度问题,提出了一种基于乌鸦搜索优化(CSO)算法的快速模糊c均值(FFCM)的改进形式。最后,利用可伸缩性决策技术实现负载均衡。通过与其他进化方法的比较,得到了所推荐的方法的熟练程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimised fuzzy clustering-based resource scheduling and dynamic load balancing algorithm for fog computing environment
An influential and standard tool, fog computing performs applications of internet of things (IoT) and it is the cloud computing's extended version. In the network of edge computing, the applications of IoT are possibly implemented by fog computing which is an emerging technology. Load on cloud is minimised with proper resource allocation using fog computing methods. Throughput maximisation, available resources optimisation, response time reduction, and elimination of overloaded single resource are the goal of load balancing algorithm. This paper suggests an optimised fuzzy clustering-based resource scheduling and dynamic load balancing (OFCRS-DLB) procedure for resource scheduling and load balancing in fog computing. For resource scheduling, this paper recommends an enhanced form of fast fuzzy C-means (FFCM) with crow search optimisation (CSO) algorithm in fog computing. Finally, the load balancing is done using scalability decision technique. The proficiency of the recommended technique is obtained by comparing with other evolutionary methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1