交通事故离散数据的分析

P. Pecherková, I. Nagy
{"title":"交通事故离散数据的分析","authors":"P. Pecherková, I. Nagy","doi":"10.1109/SCSP.2017.7973843","DOIUrl":null,"url":null,"abstract":"This paper deals with the data analysis of traffic accidents. Traffic accidents can be caused by different reasons, e.g., by watchfulness of a driver, failure of a vehicle, bad structural arrangements, etc. The aim of this paper is to investigate seriousness of incidents in dependence on different circumstances of an accident. Description of these circumstances leads to the use of a high number of different variables (about 50 variables), which are mostly discrete. The majority of statistical methods dealing with discrete variables use a frequency table. This is not suitable for traffic data because of a huge dimension. In this paper, several methods are proposed for solution to the problem with high-dimensional traffic data.","PeriodicalId":442052,"journal":{"name":"2017 Smart City Symposium Prague (SCSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of discrete data from traffic accidents\",\"authors\":\"P. Pecherková, I. Nagy\",\"doi\":\"10.1109/SCSP.2017.7973843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the data analysis of traffic accidents. Traffic accidents can be caused by different reasons, e.g., by watchfulness of a driver, failure of a vehicle, bad structural arrangements, etc. The aim of this paper is to investigate seriousness of incidents in dependence on different circumstances of an accident. Description of these circumstances leads to the use of a high number of different variables (about 50 variables), which are mostly discrete. The majority of statistical methods dealing with discrete variables use a frequency table. This is not suitable for traffic data because of a huge dimension. In this paper, several methods are proposed for solution to the problem with high-dimensional traffic data.\",\"PeriodicalId\":442052,\"journal\":{\"name\":\"2017 Smart City Symposium Prague (SCSP)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Smart City Symposium Prague (SCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCSP.2017.7973843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Smart City Symposium Prague (SCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCSP.2017.7973843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究的是交通事故的数据分析。交通意外可由不同的原因引起,例如驾驶者的警觉、车辆的故障、结构安排不当等。本文的目的是调查事件的严重性依赖于事故的不同情况。对这些情况的描述导致使用大量不同的变量(大约50个变量),这些变量大多是离散的。处理离散变量的大多数统计方法都使用频率表。这对于交通数据来说是不适合的,因为它的维度非常大。本文提出了几种解决高维交通数据问题的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of discrete data from traffic accidents
This paper deals with the data analysis of traffic accidents. Traffic accidents can be caused by different reasons, e.g., by watchfulness of a driver, failure of a vehicle, bad structural arrangements, etc. The aim of this paper is to investigate seriousness of incidents in dependence on different circumstances of an accident. Description of these circumstances leads to the use of a high number of different variables (about 50 variables), which are mostly discrete. The majority of statistical methods dealing with discrete variables use a frequency table. This is not suitable for traffic data because of a huge dimension. In this paper, several methods are proposed for solution to the problem with high-dimensional traffic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lip-reading by surveillance cameras Human machine interface for future cars. Changes needed Data-centric framework for adaptive smart city honeynets Analysis of the approach of the municipalities to the smart city conception and selected examples of its applications An autonomous taxi service for sustainable urban transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1