火箭在空中非线性加速度的逼真模拟

H. Xiong
{"title":"火箭在空中非线性加速度的逼真模拟","authors":"H. Xiong","doi":"10.11648/J.AJPA.20180605.13","DOIUrl":null,"url":null,"abstract":"The motion of the object in the medium has always been a hot research topic, and it is closely connected with many applications in our life. The acceleration of the object with multiple forces becomes very complicated, especially when these forces depend on the motion of the object. The exact formula for the object motion is a differential-integral equation and is very difficult to be solved analytically. One example of this kind of motions is the rocket launch. With sufficient thrust, the rocket can obtain an acceleration large enough to escape from the gravity of the earth. With the increasing height, the gravity from the earth becomes smaller, which affects the net acceleration of the rocket. Meanwhile, the air resistance becomes more and more important when the velocity of the rocket increases. It even plays the main role in the middle stage of the launch. Also, as the air resistance depends on both the velocity of the rocket and the air density (there is no air resistance in vacuum), the air resistance will decrease when the air density becomes small enough at the large height. In this article, a model that includes all of the factors mentioned above is established, and how these forces change the velocity of the rocket is analyzed. Two scenarios, one with air resistance and one without, are described. The velocity of the rocket in each scenario is represented by graphs, which are compared. With justification, the Taylor series is used to solve the differential-integral equation, and it is found that the fuel thrust and the gravity become important in the rocket launch at the beginning stage. In the middle stage, the air resistance begins to have a significant effect and reduces the acceleration of the rocket. In the final stage, there is virtually no gravity or air resistance, and only the fuel thrust contributes to the acceleration of the rocket.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realistic Simulations of Non-Linear Acceleration of the Rocket in the Air\",\"authors\":\"H. Xiong\",\"doi\":\"10.11648/J.AJPA.20180605.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The motion of the object in the medium has always been a hot research topic, and it is closely connected with many applications in our life. The acceleration of the object with multiple forces becomes very complicated, especially when these forces depend on the motion of the object. The exact formula for the object motion is a differential-integral equation and is very difficult to be solved analytically. One example of this kind of motions is the rocket launch. With sufficient thrust, the rocket can obtain an acceleration large enough to escape from the gravity of the earth. With the increasing height, the gravity from the earth becomes smaller, which affects the net acceleration of the rocket. Meanwhile, the air resistance becomes more and more important when the velocity of the rocket increases. It even plays the main role in the middle stage of the launch. Also, as the air resistance depends on both the velocity of the rocket and the air density (there is no air resistance in vacuum), the air resistance will decrease when the air density becomes small enough at the large height. In this article, a model that includes all of the factors mentioned above is established, and how these forces change the velocity of the rocket is analyzed. Two scenarios, one with air resistance and one without, are described. The velocity of the rocket in each scenario is represented by graphs, which are compared. With justification, the Taylor series is used to solve the differential-integral equation, and it is found that the fuel thrust and the gravity become important in the rocket launch at the beginning stage. In the middle stage, the air resistance begins to have a significant effect and reduces the acceleration of the rocket. In the final stage, there is virtually no gravity or air resistance, and only the fuel thrust contributes to the acceleration of the rocket.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20180605.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20180605.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物体在介质中的运动一直是一个研究热点,它与我们生活中的许多应用密切相关。物体在多重力作用下的加速度变得非常复杂,特别是当这些力取决于物体的运动时。物体运动的精确公式是一个微分积分方程,很难解析求解。这种运动的一个例子是火箭发射。只要有足够的推力,火箭就能获得足够大的加速度以摆脱地球引力。随着高度的增加,来自地球的重力变小,这影响了火箭的净加速度。同时,随着火箭速度的增加,空气阻力也变得越来越重要。它甚至在发射的中间阶段起着主要作用。此外,由于空气阻力取决于火箭的速度和空气密度(在真空中没有空气阻力),当空气密度在大高度变得足够小时,空气阻力将减小。在本文中,建立了一个包括上述所有因素的模型,并分析了这些力如何改变火箭的速度。描述了两种情况,一种有空气阻力,一种没有空气阻力。火箭在每种情况下的速度用图表表示,并进行比较。在证明的基础上,采用泰勒级数求解了微分积分方程,发现燃料推力和重力在火箭发射起始阶段起着重要的作用。在中间阶段,空气阻力开始产生显著影响,降低了火箭的加速度。在最后阶段,几乎没有重力或空气阻力,只有燃料推力有助于火箭的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realistic Simulations of Non-Linear Acceleration of the Rocket in the Air
The motion of the object in the medium has always been a hot research topic, and it is closely connected with many applications in our life. The acceleration of the object with multiple forces becomes very complicated, especially when these forces depend on the motion of the object. The exact formula for the object motion is a differential-integral equation and is very difficult to be solved analytically. One example of this kind of motions is the rocket launch. With sufficient thrust, the rocket can obtain an acceleration large enough to escape from the gravity of the earth. With the increasing height, the gravity from the earth becomes smaller, which affects the net acceleration of the rocket. Meanwhile, the air resistance becomes more and more important when the velocity of the rocket increases. It even plays the main role in the middle stage of the launch. Also, as the air resistance depends on both the velocity of the rocket and the air density (there is no air resistance in vacuum), the air resistance will decrease when the air density becomes small enough at the large height. In this article, a model that includes all of the factors mentioned above is established, and how these forces change the velocity of the rocket is analyzed. Two scenarios, one with air resistance and one without, are described. The velocity of the rocket in each scenario is represented by graphs, which are compared. With justification, the Taylor series is used to solve the differential-integral equation, and it is found that the fuel thrust and the gravity become important in the rocket launch at the beginning stage. In the middle stage, the air resistance begins to have a significant effect and reduces the acceleration of the rocket. In the final stage, there is virtually no gravity or air resistance, and only the fuel thrust contributes to the acceleration of the rocket.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of High Gain Single Stage Telescopic Cmos Operational Amplifier Evaluation of the Risk Associated with Drinkable Water Sources Through Analysis of Gross Alpha and Beta Radioactivity Levels in Chosen Locations, Mubi – North Heat Transfer Behavior of a PTC Receiver Tube Using Transversal Focal Inserts and CFD Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides An Energy Criterion for Rheological Failure of Rock and Application in Stability Analysis of Natural High Slope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1