基于自商图像遗传优化的光照补偿人脸识别方法

C. Pérez, L. Castillo
{"title":"基于自商图像遗传优化的光照补偿人脸识别方法","authors":"C. Pérez, L. Castillo","doi":"10.1109/ISOT.2009.5326048","DOIUrl":null,"url":null,"abstract":"Face detection and recognition depend strongly on illumination conditions. In this paper, we present improvements in the illumination compensation method called Self Quotient Image (SQI) applied to face recognition. Using genetic algorithms (GA) we select parameters of the SQI method to improve face recognition. The parameters optimized by the GA were: the fraction of the mean value within the region for the SQI, selection of Arctangent, Sigmoid, Hyperbolic Tangent or Minimum functions, and the values for the weights of each filter are selected within the range 0 and 1. We compare results of our proposed method to those with no illumination compensation and to those previously published for SQI method. We use four internationally available face databases: Yale B, CMU PIE, AR, Color FERET (grayscaled), where the first two contain face images with significant changes in illumination conditions, and the third one contains face images with slight changes in illumination conditions. Our method performs better than SQI in images with non-homogeneous illumination.","PeriodicalId":366216,"journal":{"name":"2009 International Symposium on Optomechatronic Technologies","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Illumination compensation for face recognition by genetic optimization of the Self-Quotient Image method\",\"authors\":\"C. Pérez, L. Castillo\",\"doi\":\"10.1109/ISOT.2009.5326048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection and recognition depend strongly on illumination conditions. In this paper, we present improvements in the illumination compensation method called Self Quotient Image (SQI) applied to face recognition. Using genetic algorithms (GA) we select parameters of the SQI method to improve face recognition. The parameters optimized by the GA were: the fraction of the mean value within the region for the SQI, selection of Arctangent, Sigmoid, Hyperbolic Tangent or Minimum functions, and the values for the weights of each filter are selected within the range 0 and 1. We compare results of our proposed method to those with no illumination compensation and to those previously published for SQI method. We use four internationally available face databases: Yale B, CMU PIE, AR, Color FERET (grayscaled), where the first two contain face images with significant changes in illumination conditions, and the third one contains face images with slight changes in illumination conditions. Our method performs better than SQI in images with non-homogeneous illumination.\",\"PeriodicalId\":366216,\"journal\":{\"name\":\"2009 International Symposium on Optomechatronic Technologies\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on Optomechatronic Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOT.2009.5326048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Optomechatronic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2009.5326048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

人脸检测和识别在很大程度上依赖于光照条件。本文提出了一种改进的光照补偿方法——自商图像(Self Quotient Image, SQI),用于人脸识别。利用遗传算法(GA)对SQI方法的参数进行选择,以提高人脸识别性能。GA优化的参数为:SQI在区域内的平均值的分数,arctan, Sigmoid, Hyperbolic Tangent或Minimum函数的选择,以及每个滤波器的权重值在0到1的范围内选择。我们将我们提出的方法的结果与没有光照补偿的结果和先前发表的SQI方法的结果进行了比较。我们使用了四个国际上可用的人脸数据库:Yale B、CMU PIE、AR、Color FERET(灰度),其中前两个数据库包含光照条件变化较大的人脸图像,第三个数据库包含光照条件变化较小的人脸图像。在非均匀光照条件下,该方法的性能优于SQI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Illumination compensation for face recognition by genetic optimization of the Self-Quotient Image method
Face detection and recognition depend strongly on illumination conditions. In this paper, we present improvements in the illumination compensation method called Self Quotient Image (SQI) applied to face recognition. Using genetic algorithms (GA) we select parameters of the SQI method to improve face recognition. The parameters optimized by the GA were: the fraction of the mean value within the region for the SQI, selection of Arctangent, Sigmoid, Hyperbolic Tangent or Minimum functions, and the values for the weights of each filter are selected within the range 0 and 1. We compare results of our proposed method to those with no illumination compensation and to those previously published for SQI method. We use four internationally available face databases: Yale B, CMU PIE, AR, Color FERET (grayscaled), where the first two contain face images with significant changes in illumination conditions, and the third one contains face images with slight changes in illumination conditions. Our method performs better than SQI in images with non-homogeneous illumination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of the behavior of a microcantilever based optomechatronic force sensor by finite element method Light driven Microfluidics High precision size tuning and stabilization of single salt-water microdroplets on a superhydrophobic surface An automatic color correction method inspired by the retinex and opponent colors theories Control of a quadrotor air vehicle by vanishing points in catadioptric images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1