脑电偶极子定位与跟踪的时序蒙特卡罗技术

H. Mohseni, E. Wilding, S. Sanei
{"title":"脑电偶极子定位与跟踪的时序蒙特卡罗技术","authors":"H. Mohseni, E. Wilding, S. Sanei","doi":"10.1109/SAM.2008.4606832","DOIUrl":null,"url":null,"abstract":"In this summary a method based on sequential Monte Carlo (SMC) techniques for EEG dipole source localization and tracking, in which a real head model is taken into account, is presented. The localization problem is formulated in the state space and the SMC method, which is a recursive non-Gaussian Bayesian solution, is employed. The method was applied to simulated and real data to show its potential in dipole source placing and tracking.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Sequential monte carlo techniques for EEG dipole placing and tracking\",\"authors\":\"H. Mohseni, E. Wilding, S. Sanei\",\"doi\":\"10.1109/SAM.2008.4606832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this summary a method based on sequential Monte Carlo (SMC) techniques for EEG dipole source localization and tracking, in which a real head model is taken into account, is presented. The localization problem is formulated in the state space and the SMC method, which is a recursive non-Gaussian Bayesian solution, is employed. The method was applied to simulated and real data to show its potential in dipole source placing and tracking.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种基于时序蒙特卡罗(SMC)技术的脑电偶极子源定位与跟踪方法,该方法考虑了真实头部模型。在状态空间中构造了局部化问题,并采用递归非高斯贝叶斯解的SMC方法。通过仿真和实际数据验证了该方法在偶极子源定位和跟踪中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential monte carlo techniques for EEG dipole placing and tracking
In this summary a method based on sequential Monte Carlo (SMC) techniques for EEG dipole source localization and tracking, in which a real head model is taken into account, is presented. The localization problem is formulated in the state space and the SMC method, which is a recursive non-Gaussian Bayesian solution, is employed. The method was applied to simulated and real data to show its potential in dipole source placing and tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1