基于核密度估计的鲁棒特征选择互联网流量异常检测

Sara Faria Leal, M. D. L. Oliveira, R. Valadas
{"title":"基于核密度估计的鲁棒特征选择互联网流量异常检测","authors":"Sara Faria Leal, M. D. L. Oliveira, R. Valadas","doi":"10.1109/EuCNC.2015.7194122","DOIUrl":null,"url":null,"abstract":"Anomaly detection of Internet traffic is a network service of primary importance, given the constant threats that impinge on Internet security. From a statistical perspective, traffic anomalies can be considered outliers, and must be handled through effective outlier detection methods, for which feature selection is an important pre-processing step. Feature selection removes the redundant and irrelevant features from the detection process, increasing its performance. In this work, we consider outlier detection based on principal component analysis, and feature selection based on mutual information. Moreover, we address the use of kernel density estimation (KDE) to estimate themutual information, which is designed for continuous features, and avoids the discretization step of histograms. Our results, obtained using a high-quality ground-truth, clearly show the usefulness of feature selection and the superiority of KDE to estimate the mutual information, in the context of Internet traffic anomaly detection.","PeriodicalId":310313,"journal":{"name":"2015 European Conference on Networks and Communications (EuCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly detection of Internet traffic using robust feature selection based on kernel density estimation\",\"authors\":\"Sara Faria Leal, M. D. L. Oliveira, R. Valadas\",\"doi\":\"10.1109/EuCNC.2015.7194122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection of Internet traffic is a network service of primary importance, given the constant threats that impinge on Internet security. From a statistical perspective, traffic anomalies can be considered outliers, and must be handled through effective outlier detection methods, for which feature selection is an important pre-processing step. Feature selection removes the redundant and irrelevant features from the detection process, increasing its performance. In this work, we consider outlier detection based on principal component analysis, and feature selection based on mutual information. Moreover, we address the use of kernel density estimation (KDE) to estimate themutual information, which is designed for continuous features, and avoids the discretization step of histograms. Our results, obtained using a high-quality ground-truth, clearly show the usefulness of feature selection and the superiority of KDE to estimate the mutual information, in the context of Internet traffic anomaly detection.\",\"PeriodicalId\":310313,\"journal\":{\"name\":\"2015 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2015.7194122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2015.7194122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于互联网安全面临的威胁不断,对互联网流量进行异常检测是一项至关重要的网络服务。从统计学的角度来看,交通异常可以视为异常点,必须通过有效的异常点检测方法进行处理,其中特征选择是重要的预处理步骤。特征选择从检测过程中去除了冗余和不相关的特征,提高了检测的性能。在这项工作中,我们考虑了基于主成分分析的离群点检测和基于互信息的特征选择。此外,我们解决了使用核密度估计(KDE)来估计相互信息的问题,该方法是针对连续特征设计的,避免了直方图的离散化步骤。在互联网流量异常检测的背景下,我们使用高质量的真值获得的结果清楚地显示了特征选择的有用性和KDE在估计互信息方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly detection of Internet traffic using robust feature selection based on kernel density estimation
Anomaly detection of Internet traffic is a network service of primary importance, given the constant threats that impinge on Internet security. From a statistical perspective, traffic anomalies can be considered outliers, and must be handled through effective outlier detection methods, for which feature selection is an important pre-processing step. Feature selection removes the redundant and irrelevant features from the detection process, increasing its performance. In this work, we consider outlier detection based on principal component analysis, and feature selection based on mutual information. Moreover, we address the use of kernel density estimation (KDE) to estimate themutual information, which is designed for continuous features, and avoids the discretization step of histograms. Our results, obtained using a high-quality ground-truth, clearly show the usefulness of feature selection and the superiority of KDE to estimate the mutual information, in the context of Internet traffic anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A measurement-based study of big-data movement SDN and NFV integration in generalized mobile network architecture Sub-optimal initialization for blind equalization with fast convergence in OFDM/OQAM modulation Fair resource allocation with QoS support for the uplink of LTE systems Interference protection of radio astronomy services using cognitive radio spectrum sharing models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1