生物医学文献中药物-药物相互作用提取的依赖关系和AMR嵌入

Yanshan Wang, Sijia Liu, M. Rastegar-Mojarad, Liwei Wang, F. Shen, Fei Liu, Hongfang Liu
{"title":"生物医学文献中药物-药物相互作用提取的依赖关系和AMR嵌入","authors":"Yanshan Wang, Sijia Liu, M. Rastegar-Mojarad, Liwei Wang, F. Shen, Fei Liu, Hongfang Liu","doi":"10.1145/3107411.3107426","DOIUrl":null,"url":null,"abstract":"Drug-drug interaction (DDI) is an unexpected change in a drug's effect on the human body when the drug and a second drug are co-prescribed and taken together. As many DDIs are frequently reported in biomedical literature, it is important to mine DDI information from literature to keep DDI knowledge up to date. One of the SemEval challenges in the year 2011 and 2013 was designed to tackle the task where the best system achieved an F1 score of 0.80. In this paper, we propose to utilize dependency embeddings and Abstract Meaning Representation (AMR) embeddings as features for extracting DDIs. Our contribution is two-fold. First, we employed dependency embeddings, previously shown effective for sentence classification, for DDI extraction. The dependency embeddings incorporated structural syntactic contexts into the embeddings, which were not present in the conventional word embeddings. Second, we proposed a novel syntactic embedding approach using AMR. AMR aims to abstract away from syntactic idiosyncrasies and attempts to capture only the core meaning of a sentence, which could potentially improve DDI extraction from sentences. Two classifiers (Support Vector Machine and Random Forest) taking these embedding features as input were evaluated on the DDIExtraction 2013 challenge corpus. The experimental results show the effectiveness of dependency and AMR embeddings in the DDI extraction task. The best performance was obtained by combining word, dependency and AMR embeddings (F1 score=0.84).","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Dependency and AMR Embeddings for Drug-Drug Interaction Extraction from Biomedical Literature\",\"authors\":\"Yanshan Wang, Sijia Liu, M. Rastegar-Mojarad, Liwei Wang, F. Shen, Fei Liu, Hongfang Liu\",\"doi\":\"10.1145/3107411.3107426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug-drug interaction (DDI) is an unexpected change in a drug's effect on the human body when the drug and a second drug are co-prescribed and taken together. As many DDIs are frequently reported in biomedical literature, it is important to mine DDI information from literature to keep DDI knowledge up to date. One of the SemEval challenges in the year 2011 and 2013 was designed to tackle the task where the best system achieved an F1 score of 0.80. In this paper, we propose to utilize dependency embeddings and Abstract Meaning Representation (AMR) embeddings as features for extracting DDIs. Our contribution is two-fold. First, we employed dependency embeddings, previously shown effective for sentence classification, for DDI extraction. The dependency embeddings incorporated structural syntactic contexts into the embeddings, which were not present in the conventional word embeddings. Second, we proposed a novel syntactic embedding approach using AMR. AMR aims to abstract away from syntactic idiosyncrasies and attempts to capture only the core meaning of a sentence, which could potentially improve DDI extraction from sentences. Two classifiers (Support Vector Machine and Random Forest) taking these embedding features as input were evaluated on the DDIExtraction 2013 challenge corpus. The experimental results show the effectiveness of dependency and AMR embeddings in the DDI extraction task. The best performance was obtained by combining word, dependency and AMR embeddings (F1 score=0.84).\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3107426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

药物-药物相互作用(DDI)是一种药物与另一种药物共同处方并一起服用时对人体的作用发生的意想不到的变化。由于生物医学文献中经常报道DDI,因此从文献中挖掘DDI信息以保持DDI知识的更新非常重要。在2011年和2013年的SemEval挑战赛中,其中一项挑战的设计是让最好的系统在F1中得分达到0.80。本文提出利用依赖关系嵌入和抽象意义表示(AMR)嵌入作为提取ddi的特征。我们的贡献是双重的。首先,我们使用依赖嵌入进行DDI提取,该方法在之前的句子分类中被证明是有效的。依赖项嵌入将传统词嵌入中不存在的结构句法上下文整合到嵌入中。其次,我们提出了一种新的基于AMR的句法嵌入方法。AMR旨在从句法特质中抽象出来,并试图仅捕获句子的核心含义,这可能会提高从句子中提取DDI的能力。以这些嵌入特征为输入的两种分类器(支持向量机和随机森林)在DDIExtraction 2013挑战语料库上进行了评估。实验结果表明了依赖关系和AMR嵌入在DDI提取任务中的有效性。单词、依赖关系和AMR组合嵌入效果最佳(F1得分=0.84)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dependency and AMR Embeddings for Drug-Drug Interaction Extraction from Biomedical Literature
Drug-drug interaction (DDI) is an unexpected change in a drug's effect on the human body when the drug and a second drug are co-prescribed and taken together. As many DDIs are frequently reported in biomedical literature, it is important to mine DDI information from literature to keep DDI knowledge up to date. One of the SemEval challenges in the year 2011 and 2013 was designed to tackle the task where the best system achieved an F1 score of 0.80. In this paper, we propose to utilize dependency embeddings and Abstract Meaning Representation (AMR) embeddings as features for extracting DDIs. Our contribution is two-fold. First, we employed dependency embeddings, previously shown effective for sentence classification, for DDI extraction. The dependency embeddings incorporated structural syntactic contexts into the embeddings, which were not present in the conventional word embeddings. Second, we proposed a novel syntactic embedding approach using AMR. AMR aims to abstract away from syntactic idiosyncrasies and attempts to capture only the core meaning of a sentence, which could potentially improve DDI extraction from sentences. Two classifiers (Support Vector Machine and Random Forest) taking these embedding features as input were evaluated on the DDIExtraction 2013 challenge corpus. The experimental results show the effectiveness of dependency and AMR embeddings in the DDI extraction task. The best performance was obtained by combining word, dependency and AMR embeddings (F1 score=0.84).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1