基于结构相似指数的图像序列压缩

J. Dahl, Jan Østergaard, T. L. Jensen, S. H. Jensen
{"title":"基于结构相似指数的图像序列压缩","authors":"J. Dahl, Jan Østergaard, T. L. Jensen, S. H. Jensen","doi":"10.1109/DCC.2009.28","DOIUrl":null,"url":null,"abstract":"We consider lossy compression of image sequences using l1-compression with overcomplete dictionaries. As a fidelity measure for the reconstruction quality, we incorporate the recently proposed structural similarity index measure, and we show that this leads to problem formulations that are very similar to conventional l1 compression algorithms. In addition, we develop efficient large-scale algorithms used for joint encoding of multiple image frames.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"77 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"l1 Compression of Image Sequences Using the Structural Similarity Index Measure\",\"authors\":\"J. Dahl, Jan Østergaard, T. L. Jensen, S. H. Jensen\",\"doi\":\"10.1109/DCC.2009.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider lossy compression of image sequences using l1-compression with overcomplete dictionaries. As a fidelity measure for the reconstruction quality, we incorporate the recently proposed structural similarity index measure, and we show that this leads to problem formulations that are very similar to conventional l1 compression algorithms. In addition, we develop efficient large-scale algorithms used for joint encoding of multiple image frames.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"77 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑使用带过完全字典的l1压缩对图像序列进行有损压缩。作为重建质量的保真度度量,我们结合了最近提出的结构相似性指数度量,我们表明这会导致与传统l1压缩算法非常相似的问题公式。此外,我们还开发了用于多帧图像联合编码的高效大规模算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l1 Compression of Image Sequences Using the Structural Similarity Index Measure
We consider lossy compression of image sequences using l1-compression with overcomplete dictionaries. As a fidelity measure for the reconstruction quality, we incorporate the recently proposed structural similarity index measure, and we show that this leads to problem formulations that are very similar to conventional l1 compression algorithms. In addition, we develop efficient large-scale algorithms used for joint encoding of multiple image frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1