基于不同传感器系统的自主移动机器人时空语义环境表征

Mark Niemeyer, Sebastian Pütz, J. Hertzberg
{"title":"基于不同传感器系统的自主移动机器人时空语义环境表征","authors":"Mark Niemeyer, Sebastian Pütz, J. Hertzberg","doi":"10.1109/MFI55806.2022.9913873","DOIUrl":null,"url":null,"abstract":"The large amount of high resolution sensor data, both temporal and spatial, that autonomous mobile robots collect in today’s systems requires structured and efficient management and storage during the robot mission. In response, we present SEEREP: A Spatio-Temporal-Semantic Environment Representation for Autonomous Mobile Robots. SEEREP handles various types of data at once and provides an efficient query interface for all three modalities that can be combined for high-level analyses. It supports common robotic sensor data types such as images and point clouds, as well as sensor and robot coordinate frames changing over time. Furthermore, SEEREP provides an efficient HDF5-based storage system running on the robot during operation, compatible with ROS and the corresponding sensor message definitions. The compressed HDF5 data backend can be transferred efficiently to an application server with a running SEEREP query server providing gRPC interfaces with Protobuf and Flattbuffer message types. The query server can support high-level planning and reasoning systems in e.g. agricultural environments, or other partially unstructured environments that change over time. In this paper we show that SEEREP is much better suited for these tasks than a traditional GIS, which cannot handle the different types of robotic sensor data.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Spatio-Temporal-Semantic Environment Representation for Autonomous Mobile Robots equipped with various Sensor Systems\",\"authors\":\"Mark Niemeyer, Sebastian Pütz, J. Hertzberg\",\"doi\":\"10.1109/MFI55806.2022.9913873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large amount of high resolution sensor data, both temporal and spatial, that autonomous mobile robots collect in today’s systems requires structured and efficient management and storage during the robot mission. In response, we present SEEREP: A Spatio-Temporal-Semantic Environment Representation for Autonomous Mobile Robots. SEEREP handles various types of data at once and provides an efficient query interface for all three modalities that can be combined for high-level analyses. It supports common robotic sensor data types such as images and point clouds, as well as sensor and robot coordinate frames changing over time. Furthermore, SEEREP provides an efficient HDF5-based storage system running on the robot during operation, compatible with ROS and the corresponding sensor message definitions. The compressed HDF5 data backend can be transferred efficiently to an application server with a running SEEREP query server providing gRPC interfaces with Protobuf and Flattbuffer message types. The query server can support high-level planning and reasoning systems in e.g. agricultural environments, or other partially unstructured environments that change over time. In this paper we show that SEEREP is much better suited for these tasks than a traditional GIS, which cannot handle the different types of robotic sensor data.\",\"PeriodicalId\":344737,\"journal\":{\"name\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI55806.2022.9913873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在当今的系统中,自主移动机器人收集的大量高分辨率传感器数据,包括时间和空间,需要在机器人任务期间进行结构化和有效的管理和存储。作为回应,我们提出了SEEREP:自主移动机器人的时空语义环境表示。SEEREP可以同时处理各种类型的数据,并为所有三种模式提供有效的查询接口,这些模式可以组合起来进行高级分析。它支持常见的机器人传感器数据类型,如图像和点云,以及传感器和机器人坐标帧随时间变化。此外,SEEREP提供了一个高效的基于hdf5的存储系统,在机器人操作期间运行,与ROS和相应的传感器消息定义兼容。压缩的HDF5数据后端可以高效地传输到具有运行SEEREP查询服务器的应用服务器,该服务器提供带有Protobuf和Flattbuffer消息类型的gRPC接口。查询服务器可以支持高级规划和推理系统,例如农业环境,或其他随时间变化的部分非结构化环境。在本文中,我们表明SEEREP比传统的GIS更适合这些任务,传统的GIS不能处理不同类型的机器人传感器数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Spatio-Temporal-Semantic Environment Representation for Autonomous Mobile Robots equipped with various Sensor Systems
The large amount of high resolution sensor data, both temporal and spatial, that autonomous mobile robots collect in today’s systems requires structured and efficient management and storage during the robot mission. In response, we present SEEREP: A Spatio-Temporal-Semantic Environment Representation for Autonomous Mobile Robots. SEEREP handles various types of data at once and provides an efficient query interface for all three modalities that can be combined for high-level analyses. It supports common robotic sensor data types such as images and point clouds, as well as sensor and robot coordinate frames changing over time. Furthermore, SEEREP provides an efficient HDF5-based storage system running on the robot during operation, compatible with ROS and the corresponding sensor message definitions. The compressed HDF5 data backend can be transferred efficiently to an application server with a running SEEREP query server providing gRPC interfaces with Protobuf and Flattbuffer message types. The query server can support high-level planning and reasoning systems in e.g. agricultural environments, or other partially unstructured environments that change over time. In this paper we show that SEEREP is much better suited for these tasks than a traditional GIS, which cannot handle the different types of robotic sensor data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1