基于区域加权行程长度特征的离线手写德文数字识别

P. Singh, Supratim Das, R. Sarkar, M. Nasipuri
{"title":"基于区域加权行程长度特征的离线手写德文数字识别","authors":"P. Singh, Supratim Das, R. Sarkar, M. Nasipuri","doi":"10.1109/ICCECE.2016.8009567","DOIUrl":null,"url":null,"abstract":"Recognition of handwritten Roman characters and numerals has been extensively studied in the last few decades and its accuracy reached to a satisfactory state. But the same cannot be said while talking about the Devanagari script which is one of most popular script in India. This paper proposes an efficient digit recognition system for handwritten Devanagari script. The system uses a novel 196-element Mask Oriented Directional (MOD) features for the recognition purpose. The methodology is tested using five conventional classifiers on 6000 handwritten digit samples. On applying 3-fold cross-validation scheme, the proposed system yields the highest recognition accuracy of 95.02% using Support Vector Machine (SVM) classifier.","PeriodicalId":414303,"journal":{"name":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Recognition of offline handwriten Devanagari numerals using regional weighted run length features\",\"authors\":\"P. Singh, Supratim Das, R. Sarkar, M. Nasipuri\",\"doi\":\"10.1109/ICCECE.2016.8009567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of handwritten Roman characters and numerals has been extensively studied in the last few decades and its accuracy reached to a satisfactory state. But the same cannot be said while talking about the Devanagari script which is one of most popular script in India. This paper proposes an efficient digit recognition system for handwritten Devanagari script. The system uses a novel 196-element Mask Oriented Directional (MOD) features for the recognition purpose. The methodology is tested using five conventional classifiers on 6000 handwritten digit samples. On applying 3-fold cross-validation scheme, the proposed system yields the highest recognition accuracy of 95.02% using Support Vector Machine (SVM) classifier.\",\"PeriodicalId\":414303,\"journal\":{\"name\":\"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE.2016.8009567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE.2016.8009567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在过去的几十年里,人们对手写罗马文字和数字的识别进行了广泛的研究,其准确性达到了令人满意的状态。但在谈论印度最流行的文字之一Devanagari时,就不能这么说了。提出了一种高效的手写体梵文数字识别系统。该系统采用新颖的196元掩模定向(MOD)特征进行识别。该方法使用五种传统分类器在6000个手写数字样本上进行了测试。采用3重交叉验证方案,采用支持向量机(SVM)分类器,系统的识别准确率最高,达到95.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of offline handwriten Devanagari numerals using regional weighted run length features
Recognition of handwritten Roman characters and numerals has been extensively studied in the last few decades and its accuracy reached to a satisfactory state. But the same cannot be said while talking about the Devanagari script which is one of most popular script in India. This paper proposes an efficient digit recognition system for handwritten Devanagari script. The system uses a novel 196-element Mask Oriented Directional (MOD) features for the recognition purpose. The methodology is tested using five conventional classifiers on 6000 handwritten digit samples. On applying 3-fold cross-validation scheme, the proposed system yields the highest recognition accuracy of 95.02% using Support Vector Machine (SVM) classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simulation based performance analysis of proactive, reactive and hybrid routing protocol Enhancement of optical absorption in Plasmonic thin film solar cell Task management of robot using cloud computing Study of the effect of air gap in segmented cylindrical dielectric resonator loaded monopole Model order reduction of high order LTI system using particle swarm optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1