第十一章。基于膜的流动化学系统

J. Sánchez-Marcano
{"title":"第十一章。基于膜的流动化学系统","authors":"J. Sánchez-Marcano","doi":"10.1039/9781788016094-00366","DOIUrl":null,"url":null,"abstract":"In flow chemistry systems based on membranes, a dense or porous membrane is activated with a catalyst or a biocatalyst in order to couple reaction and separation in the same unit, resulting in an intensified process called catalytic membrane reactor (CMR). In this chapter the basic principles and concepts of CMRs are defined and the different configurations: CMRs for selective product removal, CMRs for the selective additions of reactants, flow-through membrane reactors (FTMRs) and enzymatic membrane reactors (EMRs) are described. Furthermore, a short account of some representative works of the peer reviewed literature and monographs works is given. CMRs have been successfully applied at laboratory scale to enhance the conversion of reactions which are limited by the thermodynamic equilibrium through selective product removal, in oxidation and hydrogenation reactions and improving the contact between the catalyst and substrates while decreasing mass transfer limitations. CMRs have already proven economic and strategic value in bio-transformations for the high-added value chemicals production. Such processes which take place at low temperature allow the use of polymer membranes which are commercially available materials. Further advances are expected on the development inorganic membranes for high temperature applications to be applied in high temperature reactions.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chapter 11. Flow Chemistry Systems Based on Membranes\",\"authors\":\"J. Sánchez-Marcano\",\"doi\":\"10.1039/9781788016094-00366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In flow chemistry systems based on membranes, a dense or porous membrane is activated with a catalyst or a biocatalyst in order to couple reaction and separation in the same unit, resulting in an intensified process called catalytic membrane reactor (CMR). In this chapter the basic principles and concepts of CMRs are defined and the different configurations: CMRs for selective product removal, CMRs for the selective additions of reactants, flow-through membrane reactors (FTMRs) and enzymatic membrane reactors (EMRs) are described. Furthermore, a short account of some representative works of the peer reviewed literature and monographs works is given. CMRs have been successfully applied at laboratory scale to enhance the conversion of reactions which are limited by the thermodynamic equilibrium through selective product removal, in oxidation and hydrogenation reactions and improving the contact between the catalyst and substrates while decreasing mass transfer limitations. CMRs have already proven economic and strategic value in bio-transformations for the high-added value chemicals production. Such processes which take place at low temperature allow the use of polymer membranes which are commercially available materials. Further advances are expected on the development inorganic membranes for high temperature applications to be applied in high temperature reactions.\",\"PeriodicalId\":202204,\"journal\":{\"name\":\"Green Chemistry Series\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016094-00366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016094-00366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在基于膜的流动化学系统中,用催化剂或生物催化剂激活致密或多孔膜,以便在同一单元中将反应和分离耦合起来,从而产生一种称为催化膜反应器(CMR)的强化过程。在本章中,定义了cmr的基本原理和概念,并描述了不同的配置:选择性产物去除的cmr,选择性添加反应物的cmr,流式膜反应器(FTMRs)和酶促膜反应器(EMRs)。此外,还简要介绍了一些同行评议文献和专著的代表性作品。cmr已经成功地应用于实验室规模,通过选择性去除氧化和氢化反应中的产物来提高受热力学平衡限制的反应的转化,并改善催化剂和底物之间的接触,同时降低传质限制。cmr已经被证明在高附加值化学品生产的生物转化中具有经济和战略价值。这种在低温下进行的过程允许使用商业上可用的聚合物膜。高温无机膜在高温反应中的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chapter 11. Flow Chemistry Systems Based on Membranes
In flow chemistry systems based on membranes, a dense or porous membrane is activated with a catalyst or a biocatalyst in order to couple reaction and separation in the same unit, resulting in an intensified process called catalytic membrane reactor (CMR). In this chapter the basic principles and concepts of CMRs are defined and the different configurations: CMRs for selective product removal, CMRs for the selective additions of reactants, flow-through membrane reactors (FTMRs) and enzymatic membrane reactors (EMRs) are described. Furthermore, a short account of some representative works of the peer reviewed literature and monographs works is given. CMRs have been successfully applied at laboratory scale to enhance the conversion of reactions which are limited by the thermodynamic equilibrium through selective product removal, in oxidation and hydrogenation reactions and improving the contact between the catalyst and substrates while decreasing mass transfer limitations. CMRs have already proven economic and strategic value in bio-transformations for the high-added value chemicals production. Such processes which take place at low temperature allow the use of polymer membranes which are commercially available materials. Further advances are expected on the development inorganic membranes for high temperature applications to be applied in high temperature reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chapter 7. Integrating Remediation and Resource Recovery of Industrial Alkaline Wastes: Case Studies of Steel and Alumina Industry Residues Chapter 8. Conclusions Chapter 11. Applications of Engineered Nanomaterials in the Recovery of Metals from Wastewater Chapter 6. An Exploration of Key Concepts in Application of In Situ Processes for Recovery of Resources from High-volume Industrial and Mine Wastes Chapter 5. Adding Value to Ash and Digestate (AVAnD Project): Elucidating the Role and Value of Alternative Fertilisers on the Soil–Plant System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1