{"title":"双线性投票","authors":"G. Sapiro","doi":"10.1109/ICCV.1998.710716","DOIUrl":null,"url":null,"abstract":"A geometric-vision approach to solve bilinear problems in general, and the color constancy and illuminant estimation problem in particular, is presented in this paper. We show a general framework, based on ideas from the generalized (probabilistic) Hough transform, to estimate the unknown variables in the bilinear form. In the case of illuminant and reflectance estimation in natural images, each image pixel \"votes\" for possible illuminants (or reflectance), and the estimation is based on cumulative votes. In the general case, the voting is for the parameters of the bilinear model. The framework is natural for the introduction of physical constraints. For the case of illuminant estimation, we briefly show the relation of this work with previous algorithms for color constancy, and present examples.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Bilinear voting\",\"authors\":\"G. Sapiro\",\"doi\":\"10.1109/ICCV.1998.710716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A geometric-vision approach to solve bilinear problems in general, and the color constancy and illuminant estimation problem in particular, is presented in this paper. We show a general framework, based on ideas from the generalized (probabilistic) Hough transform, to estimate the unknown variables in the bilinear form. In the case of illuminant and reflectance estimation in natural images, each image pixel \\\"votes\\\" for possible illuminants (or reflectance), and the estimation is based on cumulative votes. In the general case, the voting is for the parameters of the bilinear model. The framework is natural for the introduction of physical constraints. For the case of illuminant estimation, we briefly show the relation of this work with previous algorithms for color constancy, and present examples.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种几何视觉方法来解决一般的双线性问题,特别是颜色常数和光源估计问题。我们展示了一个基于广义(概率)霍夫变换思想的一般框架,以双线性形式估计未知变量。在自然图像中的光源和反射率估计的情况下,每个图像像素“投票”可能的光源(或反射率),估计是基于累积投票。在一般情况下,投票是针对双线性模型的参数。该框架对于引入物理约束是很自然的。对于光源估计的情况,我们简要地展示了这项工作与以前的颜色常数算法的关系,并给出了例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilinear voting
A geometric-vision approach to solve bilinear problems in general, and the color constancy and illuminant estimation problem in particular, is presented in this paper. We show a general framework, based on ideas from the generalized (probabilistic) Hough transform, to estimate the unknown variables in the bilinear form. In the case of illuminant and reflectance estimation in natural images, each image pixel "votes" for possible illuminants (or reflectance), and the estimation is based on cumulative votes. In the general case, the voting is for the parameters of the bilinear model. The framework is natural for the introduction of physical constraints. For the case of illuminant estimation, we briefly show the relation of this work with previous algorithms for color constancy, and present examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1