H. Mekaru, T. Takano, K. Awazu, M. Takahashi, R. Maeda
{"title":"利用MEMS技术制作三维x射线掩模","authors":"H. Mekaru, T. Takano, K. Awazu, M. Takahashi, R. Maeda","doi":"10.1109/NEMS.2007.352056","DOIUrl":null,"url":null,"abstract":"The authors fabricated silicon microstructures with inclined sidewalls on the SOI wafer by using tapered-RIE technique. Then, this wafer was processed to an X-ray mask that made the silicon structure an X-ray absorber. The inclined angle of the sidewall of silicon X-ray absorbers has been changed from 60 to 71 degrees by adjusting the pressure of the mixed gas in the process chamber of the ICP-RIE system. The thickness distribution of the X-ray absorber is different according to the difference of the inclined angle of the X-ray absorber. As a result, the transmission intensity of X-rays is locally changed, and the energy distribution of X-rays irradiated on a resist can be controlled. The authors experimented on the X-ray lithography using this X-ray gray mask and the beamline BL-4 in the synchrotron radiation facility TERAS of AIST. As a result, we succeeded in fabrication of three-dimensional PMMA microstructures by only one X-ray exposure without scanning and rotating the X-ray exposure stage.","PeriodicalId":364039,"journal":{"name":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Three Dimensional X-ray Mask using MEMS Technology\",\"authors\":\"H. Mekaru, T. Takano, K. Awazu, M. Takahashi, R. Maeda\",\"doi\":\"10.1109/NEMS.2007.352056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors fabricated silicon microstructures with inclined sidewalls on the SOI wafer by using tapered-RIE technique. Then, this wafer was processed to an X-ray mask that made the silicon structure an X-ray absorber. The inclined angle of the sidewall of silicon X-ray absorbers has been changed from 60 to 71 degrees by adjusting the pressure of the mixed gas in the process chamber of the ICP-RIE system. The thickness distribution of the X-ray absorber is different according to the difference of the inclined angle of the X-ray absorber. As a result, the transmission intensity of X-rays is locally changed, and the energy distribution of X-rays irradiated on a resist can be controlled. The authors experimented on the X-ray lithography using this X-ray gray mask and the beamline BL-4 in the synchrotron radiation facility TERAS of AIST. As a result, we succeeded in fabrication of three-dimensional PMMA microstructures by only one X-ray exposure without scanning and rotating the X-ray exposure stage.\",\"PeriodicalId\":364039,\"journal\":{\"name\":\"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2007.352056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2007.352056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Three Dimensional X-ray Mask using MEMS Technology
The authors fabricated silicon microstructures with inclined sidewalls on the SOI wafer by using tapered-RIE technique. Then, this wafer was processed to an X-ray mask that made the silicon structure an X-ray absorber. The inclined angle of the sidewall of silicon X-ray absorbers has been changed from 60 to 71 degrees by adjusting the pressure of the mixed gas in the process chamber of the ICP-RIE system. The thickness distribution of the X-ray absorber is different according to the difference of the inclined angle of the X-ray absorber. As a result, the transmission intensity of X-rays is locally changed, and the energy distribution of X-rays irradiated on a resist can be controlled. The authors experimented on the X-ray lithography using this X-ray gray mask and the beamline BL-4 in the synchrotron radiation facility TERAS of AIST. As a result, we succeeded in fabrication of three-dimensional PMMA microstructures by only one X-ray exposure without scanning and rotating the X-ray exposure stage.