基于方差分析的射频DNA分析:识别设备分类的重要参数

Kevin S. Kuciapinski, M. Temple, R. W. Klein
{"title":"基于方差分析的射频DNA分析:识别设备分类的重要参数","authors":"Kevin S. Kuciapinski, M. Temple, R. W. Klein","doi":"10.5220/0002994100470052","DOIUrl":null,"url":null,"abstract":"Analysis of variance (ANOVA) is applied to RF DNA fingerprinting techniques to ascertain the most significant signal characteristics that can be used to form robust statistical fingerprint features. The goal is to find features that enable reliable identification of like-model communication devices having different serial numbers. Once achieved, these unique physical layer identities can be used to augment existing bit-level protection mechanisms and overall network security is improved. ANOVA experimentation is generated using a subset of collected signal characteristics (amplitude, phase, frequency, signal-to-noise ratio, etc.) and post-collection processing parameters (bandwidth, fingerprint regions, statistical features, etc.). The ANOVA input is percent correct device classification as obtained from MDA/ML discrimination using three like-model devices from a given manufacturer. Full factorial design experiments and ANOVA are used to determine the significance of individual parameters, and interactions thereof, in achieving higher percentages of correct classification. ANOVA is shown to be well-suited for the task and reveals parametric interactions that are otherwise unobservable using conventional graphical and tabular data representations.","PeriodicalId":332730,"journal":{"name":"2010 International Conference on Wireless Information Networks and Systems (WINSYS)","volume":"22 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ANOVA-based RF DNA analysis: Identifying significant parameters for device classification\",\"authors\":\"Kevin S. Kuciapinski, M. Temple, R. W. Klein\",\"doi\":\"10.5220/0002994100470052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of variance (ANOVA) is applied to RF DNA fingerprinting techniques to ascertain the most significant signal characteristics that can be used to form robust statistical fingerprint features. The goal is to find features that enable reliable identification of like-model communication devices having different serial numbers. Once achieved, these unique physical layer identities can be used to augment existing bit-level protection mechanisms and overall network security is improved. ANOVA experimentation is generated using a subset of collected signal characteristics (amplitude, phase, frequency, signal-to-noise ratio, etc.) and post-collection processing parameters (bandwidth, fingerprint regions, statistical features, etc.). The ANOVA input is percent correct device classification as obtained from MDA/ML discrimination using three like-model devices from a given manufacturer. Full factorial design experiments and ANOVA are used to determine the significance of individual parameters, and interactions thereof, in achieving higher percentages of correct classification. ANOVA is shown to be well-suited for the task and reveals parametric interactions that are otherwise unobservable using conventional graphical and tabular data representations.\",\"PeriodicalId\":332730,\"journal\":{\"name\":\"2010 International Conference on Wireless Information Networks and Systems (WINSYS)\",\"volume\":\"22 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wireless Information Networks and Systems (WINSYS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002994100470052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wireless Information Networks and Systems (WINSYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002994100470052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

方差分析(ANOVA)应用于射频DNA指纹识别技术,以确定最显著的信号特征,可用于形成稳健的统计指纹特征。目标是找到能够可靠地识别具有不同序列号的同类通信设备的特性。一旦实现,这些独特的物理层身份可以用来增强现有的位级保护机制,并提高整体网络安全性。利用采集到的信号特征(幅度、相位、频率、信噪比等)和采集后处理参数(带宽、指纹区域、统计特征等)的子集生成方差分析实验。方差分析输入是使用来自给定制造商的三个相似模型设备从MDA/ML判别中获得的设备分类的正确百分比。全因子设计实验和方差分析用于确定个体参数及其相互作用的显著性,以获得更高的正确分类百分比。方差分析被证明非常适合这项任务,并揭示了使用传统的图形和表格数据表示无法观察到的参数交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANOVA-based RF DNA analysis: Identifying significant parameters for device classification
Analysis of variance (ANOVA) is applied to RF DNA fingerprinting techniques to ascertain the most significant signal characteristics that can be used to form robust statistical fingerprint features. The goal is to find features that enable reliable identification of like-model communication devices having different serial numbers. Once achieved, these unique physical layer identities can be used to augment existing bit-level protection mechanisms and overall network security is improved. ANOVA experimentation is generated using a subset of collected signal characteristics (amplitude, phase, frequency, signal-to-noise ratio, etc.) and post-collection processing parameters (bandwidth, fingerprint regions, statistical features, etc.). The ANOVA input is percent correct device classification as obtained from MDA/ML discrimination using three like-model devices from a given manufacturer. Full factorial design experiments and ANOVA are used to determine the significance of individual parameters, and interactions thereof, in achieving higher percentages of correct classification. ANOVA is shown to be well-suited for the task and reveals parametric interactions that are otherwise unobservable using conventional graphical and tabular data representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brief contents Cooperative approach to self-managed VANETs Managing ‘train-to-earth’ heavy communications: A middleware software to manage broadband wireless communications in the railway scope QoS scheduling for IEEE 802.16e mesh mode using Genetic Algorithms Automatic context detection of a mobile user
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1