基于低秩和稀疏矩阵分解的鲁棒绝对旋转估计

F. Arrigoni, L. Magri, B. Rossi, P. Fragneto, Andrea Fusiello
{"title":"基于低秩和稀疏矩阵分解的鲁棒绝对旋转估计","authors":"F. Arrigoni, L. Magri, B. Rossi, P. Fragneto, Andrea Fusiello","doi":"10.1109/3DV.2014.48","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust method to solve the absolute rotation estimation problem, which arises in global registration of 3D point sets and in structure-from-motion. A novel cost function is formulated which inherently copes with outliers. In particular, the proposed algorithm handles both outlier and missing relative rotations, by casting the problem as a \"low-rank & sparse\" matrix decomposition. As a side effect, this solution can be seen as a valid and cost-effective detector of inconsistent pair wise rotations. Computational efficiency and numerical accuracy, are demonstrated by simulated and real experiments.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Robust Absolute Rotation Estimation via Low-Rank and Sparse Matrix Decomposition\",\"authors\":\"F. Arrigoni, L. Magri, B. Rossi, P. Fragneto, Andrea Fusiello\",\"doi\":\"10.1109/3DV.2014.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust method to solve the absolute rotation estimation problem, which arises in global registration of 3D point sets and in structure-from-motion. A novel cost function is formulated which inherently copes with outliers. In particular, the proposed algorithm handles both outlier and missing relative rotations, by casting the problem as a \\\"low-rank & sparse\\\" matrix decomposition. As a side effect, this solution can be seen as a valid and cost-effective detector of inconsistent pair wise rotations. Computational efficiency and numerical accuracy, are demonstrated by simulated and real experiments.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

针对三维点集全局配准和运动构造中出现的绝对旋转估计问题,提出了一种鲁棒方法。提出了一种新的成本函数,它固有地处理异常值。特别是,该算法通过将问题转换为“低秩稀疏”矩阵分解来处理异常值和缺失的相对旋转。作为副作用,该解决方案可以被视为不一致对旋转的有效且经济的检测器。通过仿真和实际实验验证了该方法的计算效率和数值精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Absolute Rotation Estimation via Low-Rank and Sparse Matrix Decomposition
This paper proposes a robust method to solve the absolute rotation estimation problem, which arises in global registration of 3D point sets and in structure-from-motion. A novel cost function is formulated which inherently copes with outliers. In particular, the proposed algorithm handles both outlier and missing relative rotations, by casting the problem as a "low-rank & sparse" matrix decomposition. As a side effect, this solution can be seen as a valid and cost-effective detector of inconsistent pair wise rotations. Computational efficiency and numerical accuracy, are demonstrated by simulated and real experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1