利用能量计分法检测恶意邮件附件中的宏少和反规避恶意软件

Shyam Sundar Ramaswami, Gandharba Swain
{"title":"利用能量计分法检测恶意邮件附件中的宏少和反规避恶意软件","authors":"Shyam Sundar Ramaswami, Gandharba Swain","doi":"10.1109/AICAPS57044.2023.10074267","DOIUrl":null,"url":null,"abstract":"E-mails have become an inevitable part of everyone's internet lives today. Be it business, commercial, be it entertainment, e-mails are the crux of marketing and communication e-mail is the primary entry point for many malware-based attacks. Malspam is another form of e-mail delivered with malicious attachments. Macro-based malware is very common these days where the threat actor plans a malicious script that executes or downloads the actual malware when the document is opened. This is more towards a Microsoft Office document. In this paper, we are discussing a technique where the threat actors went un-detected for months by anti-virus vendors and how we ended up detecting the malicious elements inside a Microsoft Office document. This paper also proposes a solution using Anergy Scoring Methodology to flag a good Microsoft Office document vs a bad Microsoft Office Document in a swift and convincing manner.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Macro less and Anti-evasive Malware in Malspam Word Attachments Using Anergy Scoring Methodology\",\"authors\":\"Shyam Sundar Ramaswami, Gandharba Swain\",\"doi\":\"10.1109/AICAPS57044.2023.10074267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-mails have become an inevitable part of everyone's internet lives today. Be it business, commercial, be it entertainment, e-mails are the crux of marketing and communication e-mail is the primary entry point for many malware-based attacks. Malspam is another form of e-mail delivered with malicious attachments. Macro-based malware is very common these days where the threat actor plans a malicious script that executes or downloads the actual malware when the document is opened. This is more towards a Microsoft Office document. In this paper, we are discussing a technique where the threat actors went un-detected for months by anti-virus vendors and how we ended up detecting the malicious elements inside a Microsoft Office document. This paper also proposes a solution using Anergy Scoring Methodology to flag a good Microsoft Office document vs a bad Microsoft Office Document in a swift and convincing manner.\",\"PeriodicalId\":146698,\"journal\":{\"name\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAPS57044.2023.10074267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子邮件已经成为当今每个人网络生活中不可避免的一部分。无论是商务、商业还是娱乐,电子邮件都是营销和通信的关键。电子邮件是许多恶意软件攻击的主要入口。垃圾邮件是另一种带有恶意附件的电子邮件。基于宏的恶意软件现在非常常见,威胁行为者会计划一个恶意脚本,在打开文档时执行或下载实际的恶意软件。这更接近于Microsoft Office文档。在本文中,我们将讨论一种技术,在这种技术中,反病毒供应商数月未检测到威胁参与者,以及我们如何最终检测到Microsoft Office文档中的恶意元素。本文还提出了一种解决方案,即使用能量评分法以一种快速而令人信服的方式标记一个好的Microsoft Office文档和一个坏的Microsoft Office文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Macro less and Anti-evasive Malware in Malspam Word Attachments Using Anergy Scoring Methodology
E-mails have become an inevitable part of everyone's internet lives today. Be it business, commercial, be it entertainment, e-mails are the crux of marketing and communication e-mail is the primary entry point for many malware-based attacks. Malspam is another form of e-mail delivered with malicious attachments. Macro-based malware is very common these days where the threat actor plans a malicious script that executes or downloads the actual malware when the document is opened. This is more towards a Microsoft Office document. In this paper, we are discussing a technique where the threat actors went un-detected for months by anti-virus vendors and how we ended up detecting the malicious elements inside a Microsoft Office document. This paper also proposes a solution using Anergy Scoring Methodology to flag a good Microsoft Office document vs a bad Microsoft Office Document in a swift and convincing manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Irrigation Management System for Precision Agriculture Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image An Optimal Differential Evolution Based XGB Classifier for IoMT malware classification Sarcasm Detection followed by Sentiment Analysis for Bengali Language: Neural Network & Supervised Approach Feature Selection using Enhanced Nature Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1