结合偏好强度的多标准推荐系统

Angeliki Mikeli, Dimitris Sotiros, Dimitris Apostolou, D. Despotis
{"title":"结合偏好强度的多标准推荐系统","authors":"Angeliki Mikeli, Dimitris Sotiros, Dimitris Apostolou, D. Despotis","doi":"10.1109/IISA.2013.6623719","DOIUrl":null,"url":null,"abstract":"Many websites provide visitors with the possibility to evaluate each item on more than one criteria. A commonly used rating scale is the one to five-star rating system or similar linguistic scales. Such scales are ordinal but the symbolic or lexical semantics convey information about the strength of user references in addition to the order of rated items. We refer to such scales as discrete ordered scales. We present AHP-Rec a method that treats user ratings as interval scale data and uses a multi-criteria approach for deriving predictions for user ratings. We use the data provided by Yahoo! Movies to demonstrate and evaluate the AHP-Rec recommender method. AHP-Rec takes as input the ratings each user gives to movies, calculates weights for each scale item that are personal for each user and provides its recommendation by aggregating preferences of similar users. Our method provides improved results over the state of the art single criterion method SVD++ and the multi-criteria method UTARec.","PeriodicalId":261368,"journal":{"name":"IISA 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A multi-criteria recommender system incorporating intensity of preferences\",\"authors\":\"Angeliki Mikeli, Dimitris Sotiros, Dimitris Apostolou, D. Despotis\",\"doi\":\"10.1109/IISA.2013.6623719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many websites provide visitors with the possibility to evaluate each item on more than one criteria. A commonly used rating scale is the one to five-star rating system or similar linguistic scales. Such scales are ordinal but the symbolic or lexical semantics convey information about the strength of user references in addition to the order of rated items. We refer to such scales as discrete ordered scales. We present AHP-Rec a method that treats user ratings as interval scale data and uses a multi-criteria approach for deriving predictions for user ratings. We use the data provided by Yahoo! Movies to demonstrate and evaluate the AHP-Rec recommender method. AHP-Rec takes as input the ratings each user gives to movies, calculates weights for each scale item that are personal for each user and provides its recommendation by aggregating preferences of similar users. Our method provides improved results over the state of the art single criterion method SVD++ and the multi-criteria method UTARec.\",\"PeriodicalId\":261368,\"journal\":{\"name\":\"IISA 2013\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISA 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2013.6623719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2013.6623719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

许多网站为访问者提供了在多个标准上评估每个项目的可能性。一种常用的评定量表是一到五星级评定系统或类似的语言量表。这些量表是有序的,但符号或词汇语义除了传达被评分项目的顺序外,还传达了有关用户引用强度的信息。我们把这样的尺度称为离散有序尺度。我们提出了AHP-Rec方法,该方法将用户评级视为区间尺度数据,并使用多标准方法来获得用户评级的预测。我们使用Yahoo!影片演示和评价AHP-Rec推荐方法。AHP-Rec将每个用户对电影的评分作为输入,计算每个用户的个人评分项的权重,并通过汇总类似用户的偏好来提供推荐。我们的方法比目前最先进的单准则方法svd++和多准则方法UTARec提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-criteria recommender system incorporating intensity of preferences
Many websites provide visitors with the possibility to evaluate each item on more than one criteria. A commonly used rating scale is the one to five-star rating system or similar linguistic scales. Such scales are ordinal but the symbolic or lexical semantics convey information about the strength of user references in addition to the order of rated items. We refer to such scales as discrete ordered scales. We present AHP-Rec a method that treats user ratings as interval scale data and uses a multi-criteria approach for deriving predictions for user ratings. We use the data provided by Yahoo! Movies to demonstrate and evaluate the AHP-Rec recommender method. AHP-Rec takes as input the ratings each user gives to movies, calculates weights for each scale item that are personal for each user and provides its recommendation by aggregating preferences of similar users. Our method provides improved results over the state of the art single criterion method SVD++ and the multi-criteria method UTARec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an IoT Smart City framework Uncertainty reasoning for the Semantic Web based on Dempster-Shafer model Open data for e-government the Greek case On the creation of a Digital Cultural Heritage Map Density-based Kernel Scale estimation for Kernel clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1