{"title":"213 nm Nd-YAG脉冲激光对硅基光纤的损伤","authors":"S. Heiden, P. Raithel, R. Yadav, K. Klein","doi":"10.1117/12.2574380","DOIUrl":null,"url":null,"abstract":"An automated set-up for 213 nm UV laser damaging in parallel to spectral analyses will be used to show the spectral laser damaging in silica-based fibers with low hydroxyl content. The 213 nm wavelength is ideal, because it is close to the peak wavelength of one of the E’-centers in silica. Due to automation, short-term measurements down to 0.5 s and long-term measurements up to 2 days and more are possible. In addition, the spectral transmission changes are fitted with multiple Gaussian shaped bands. Although the basic attenuation in non-loaded fibers is high, the pulse energies are still high enough to generate defects along a 1 m long fiber. For the first time, to our knowledge, a transfer from E’γ to E’γ is observed within 1 s, with a laser repetition rate of 2 kHz. Due to optimal fitting, a band around 180 nm is likely influencing the UVC region. In hydrogen-loaded fibers, similar UV defects are seen. The related absorption bands can be optimally adopted to measurement results. The E’-centers play a minor role in short-term measurements because these defects are passivated during hydrogen-loading. Additionally, the band at 328 nm due to molecular chlorine will be reduced. The temporal behavior of all absorption band, including the predicted 180 nm band, are shown.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"11514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"213 nm Nd-YAG pulsed laser damage of non-loaded and hydrogen-loaded silica-based fibers\",\"authors\":\"S. Heiden, P. Raithel, R. Yadav, K. Klein\",\"doi\":\"10.1117/12.2574380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automated set-up for 213 nm UV laser damaging in parallel to spectral analyses will be used to show the spectral laser damaging in silica-based fibers with low hydroxyl content. The 213 nm wavelength is ideal, because it is close to the peak wavelength of one of the E’-centers in silica. Due to automation, short-term measurements down to 0.5 s and long-term measurements up to 2 days and more are possible. In addition, the spectral transmission changes are fitted with multiple Gaussian shaped bands. Although the basic attenuation in non-loaded fibers is high, the pulse energies are still high enough to generate defects along a 1 m long fiber. For the first time, to our knowledge, a transfer from E’γ to E’γ is observed within 1 s, with a laser repetition rate of 2 kHz. Due to optimal fitting, a band around 180 nm is likely influencing the UVC region. In hydrogen-loaded fibers, similar UV defects are seen. The related absorption bands can be optimally adopted to measurement results. The E’-centers play a minor role in short-term measurements because these defects are passivated during hydrogen-loading. Additionally, the band at 328 nm due to molecular chlorine will be reduced. The temporal behavior of all absorption band, including the predicted 180 nm band, are shown.\",\"PeriodicalId\":202227,\"journal\":{\"name\":\"Laser Damage\",\"volume\":\"11514 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2574380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2574380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
213 nm Nd-YAG pulsed laser damage of non-loaded and hydrogen-loaded silica-based fibers
An automated set-up for 213 nm UV laser damaging in parallel to spectral analyses will be used to show the spectral laser damaging in silica-based fibers with low hydroxyl content. The 213 nm wavelength is ideal, because it is close to the peak wavelength of one of the E’-centers in silica. Due to automation, short-term measurements down to 0.5 s and long-term measurements up to 2 days and more are possible. In addition, the spectral transmission changes are fitted with multiple Gaussian shaped bands. Although the basic attenuation in non-loaded fibers is high, the pulse energies are still high enough to generate defects along a 1 m long fiber. For the first time, to our knowledge, a transfer from E’γ to E’γ is observed within 1 s, with a laser repetition rate of 2 kHz. Due to optimal fitting, a band around 180 nm is likely influencing the UVC region. In hydrogen-loaded fibers, similar UV defects are seen. The related absorption bands can be optimally adopted to measurement results. The E’-centers play a minor role in short-term measurements because these defects are passivated during hydrogen-loading. Additionally, the band at 328 nm due to molecular chlorine will be reduced. The temporal behavior of all absorption band, including the predicted 180 nm band, are shown.