一类半模糊协同聚类搜索算法

Rkia Fajr, Ayoub Arafi, Youssef Safi, A. Bouroumi
{"title":"一类半模糊协同聚类搜索算法","authors":"Rkia Fajr, Ayoub Arafi, Youssef Safi, A. Bouroumi","doi":"10.1109/SITA.2013.6560795","DOIUrl":null,"url":null,"abstract":"In this paper, we present a semi-fuzzy collaborative algorithm for detecting the optimal number of clusters in a given data set of unlabeled objects. This algorithm is based on a measure of inter-points similarity that allows the detection and creation of clusters, plus a measure of ambiguity that allows collaboration between clusters during their formation. The algorithm also provides a matrix of optimized prototypes representing all the detected clusters. The performance of the proposed method is demonstrated through three examples of test data.","PeriodicalId":145244,"journal":{"name":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-fuzzy collaborative algorithm for cluster seeking\",\"authors\":\"Rkia Fajr, Ayoub Arafi, Youssef Safi, A. Bouroumi\",\"doi\":\"10.1109/SITA.2013.6560795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a semi-fuzzy collaborative algorithm for detecting the optimal number of clusters in a given data set of unlabeled objects. This algorithm is based on a measure of inter-points similarity that allows the detection and creation of clusters, plus a measure of ambiguity that allows collaboration between clusters during their formation. The algorithm also provides a matrix of optimized prototypes representing all the detected clusters. The performance of the proposed method is demonstrated through three examples of test data.\",\"PeriodicalId\":145244,\"journal\":{\"name\":\"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"31 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2013.6560795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2013.6560795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种半模糊协同算法,用于检测给定数据集中未标记对象的最优聚类数量。该算法基于点间相似性度量,该度量允许集群的检测和创建,以及模糊性度量,该度量允许集群在形成过程中进行协作。该算法还提供了一个代表所有检测到的集群的优化原型矩阵。通过三个测试数据实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-fuzzy collaborative algorithm for cluster seeking
In this paper, we present a semi-fuzzy collaborative algorithm for detecting the optimal number of clusters in a given data set of unlabeled objects. This algorithm is based on a measure of inter-points similarity that allows the detection and creation of clusters, plus a measure of ambiguity that allows collaboration between clusters during their formation. The algorithm also provides a matrix of optimized prototypes representing all the detected clusters. The performance of the proposed method is demonstrated through three examples of test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A rule-based simulation approach to scheduling problem in semiconductor photolithography process Hybrid network selection strategy by using M-AHP/E-TOPSIS for heterogeneous networks A semantic approach for automatic image annotation Result merging for meta-search engine Review of Web services description approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1