季节对土壤真菌多样性的影响及耐砷性筛选与修复

D. Pandey, Harbans Kaur Kehri, Ifra Zoomi, S. Chaturvedi, Kanhaiya Lal Chaudhary
{"title":"季节对土壤真菌多样性的影响及耐砷性筛选与修复","authors":"D. Pandey, Harbans Kaur Kehri, Ifra Zoomi, S. Chaturvedi, Kanhaiya Lal Chaudhary","doi":"10.7324/jabb.2022.10s106","DOIUrl":null,"url":null,"abstract":"The seasonal variations were closely linked to climatic factors such as air temperature, rainfall, humidity, and other factors, all of which had a significant impact on soil characteristics, organic matter, and microbial population. The nutritional and physicochemical characteristics of their environment have an impact on soil microbe survival and dissemination. Heavy metal deposition in soil and plants, both edible and non-edible components, is linked to the consumption of heavy metal contaminated foods and the substantial health risks they provide. Seasonal diversity of soil fungi, as well as the screening of arsenic-resistant fungi and their ability to play a substantial role in bioremediation, was investigated in this work. The highest number of fungal species (17) was likewise found in the winter season, while the lowest number of species (11) was found in the summer. There were seven Aspergillus species, four Penicillium species, two Alternaria species, and single species of other fungi found. During the monsoon and winter seasons, the population of Aspergillus niger was at its peak. The genus Penicillium, on the other hand, reaches its peak number during the summer. Five fungi, Aspergillus nidulans, A. niger, Aspergillus sp. isolate HKK4, Aspergillus sp., and Penicillium sp., were found as arsenic tolerant. Aspergillus sp. isolate HKK4, which was isolated as arsenic tolerant and could tolerate more than 500 ppm of arsenic, outperformed all other fungus in terms of P-solubilization and arsenic removal.","PeriodicalId":423079,"journal":{"name":"Journal of Applied Biology & Biotechnology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal effect on the diversity of soil fungi and screening for arsenic tolerance and their remediation\",\"authors\":\"D. Pandey, Harbans Kaur Kehri, Ifra Zoomi, S. Chaturvedi, Kanhaiya Lal Chaudhary\",\"doi\":\"10.7324/jabb.2022.10s106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The seasonal variations were closely linked to climatic factors such as air temperature, rainfall, humidity, and other factors, all of which had a significant impact on soil characteristics, organic matter, and microbial population. The nutritional and physicochemical characteristics of their environment have an impact on soil microbe survival and dissemination. Heavy metal deposition in soil and plants, both edible and non-edible components, is linked to the consumption of heavy metal contaminated foods and the substantial health risks they provide. Seasonal diversity of soil fungi, as well as the screening of arsenic-resistant fungi and their ability to play a substantial role in bioremediation, was investigated in this work. The highest number of fungal species (17) was likewise found in the winter season, while the lowest number of species (11) was found in the summer. There were seven Aspergillus species, four Penicillium species, two Alternaria species, and single species of other fungi found. During the monsoon and winter seasons, the population of Aspergillus niger was at its peak. The genus Penicillium, on the other hand, reaches its peak number during the summer. Five fungi, Aspergillus nidulans, A. niger, Aspergillus sp. isolate HKK4, Aspergillus sp., and Penicillium sp., were found as arsenic tolerant. Aspergillus sp. isolate HKK4, which was isolated as arsenic tolerant and could tolerate more than 500 ppm of arsenic, outperformed all other fungus in terms of P-solubilization and arsenic removal.\",\"PeriodicalId\":423079,\"journal\":{\"name\":\"Journal of Applied Biology & Biotechnology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/jabb.2022.10s106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2022.10s106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

季节变化与气温、降雨、湿度等气候因子密切相关,对土壤特征、有机质和微生物种群均有显著影响。土壤环境的营养和理化特性影响着土壤微生物的生存和传播。土壤和植物中的重金属沉积,包括可食用和不可食用成分,与重金属污染食品的消费及其带来的重大健康风险有关。研究了土壤真菌的季节多样性、抗砷真菌的筛选及其在生物修复中发挥重要作用的能力。真菌种类也以冬季最多(17种),夏季最少(11种)。其中曲霉属7种,青霉属4种,交替菌属2种,其他真菌1种。在季风季节和冬季,黑曲霉的数量达到高峰。另一方面,青霉属的数量在夏季达到顶峰。5种真菌,即中性曲霉、黑曲霉、分离株HKK4、曲霉和青霉均具有耐砷性。Aspergillus sp.分离株HKK4具有较强的耐砷性,可耐受500 ppm以上的砷,在p溶解和除砷方面优于其他真菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seasonal effect on the diversity of soil fungi and screening for arsenic tolerance and their remediation
The seasonal variations were closely linked to climatic factors such as air temperature, rainfall, humidity, and other factors, all of which had a significant impact on soil characteristics, organic matter, and microbial population. The nutritional and physicochemical characteristics of their environment have an impact on soil microbe survival and dissemination. Heavy metal deposition in soil and plants, both edible and non-edible components, is linked to the consumption of heavy metal contaminated foods and the substantial health risks they provide. Seasonal diversity of soil fungi, as well as the screening of arsenic-resistant fungi and their ability to play a substantial role in bioremediation, was investigated in this work. The highest number of fungal species (17) was likewise found in the winter season, while the lowest number of species (11) was found in the summer. There were seven Aspergillus species, four Penicillium species, two Alternaria species, and single species of other fungi found. During the monsoon and winter seasons, the population of Aspergillus niger was at its peak. The genus Penicillium, on the other hand, reaches its peak number during the summer. Five fungi, Aspergillus nidulans, A. niger, Aspergillus sp. isolate HKK4, Aspergillus sp., and Penicillium sp., were found as arsenic tolerant. Aspergillus sp. isolate HKK4, which was isolated as arsenic tolerant and could tolerate more than 500 ppm of arsenic, outperformed all other fungus in terms of P-solubilization and arsenic removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In vitro antioxidant and acetylcholinesterase activities of catechin-loaded green fabricated zinc oxide nanoparticles Investigation on the antifungal activity of Aspergillus giganteus in different culture conditions An epidemiological outbreak of scrub typhus caused by Orientia tsutsugamushi – A comprehensive review Potassium-Solubilizing Microorganisms for Agricultural Sustainability Suppression of the RAGE gene expression in RAW 264.7 murine leukemia cell line by ethyl acetate extract of Mikania micrantha (L.) Kunth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1