运行时可重构硬件加速器节能转置卷积

Emanuel Marrazzo, F. Spagnolo, S. Perri
{"title":"运行时可重构硬件加速器节能转置卷积","authors":"Emanuel Marrazzo, F. Spagnolo, S. Perri","doi":"10.1109/prime55000.2022.9816800","DOIUrl":null,"url":null,"abstract":"Transposed convolution is a crucial operation in several computer vision applications, including emerging Convolutional Neural Networks for super-resolution, generative adversarial and segmentation tasks. Such algorithms deal with high computational loads and memory requirements, which hinder their implementation in real-time and power-constrained embedded systems. In addition, they may adopt different kernel sizes along the network, thus making the design of flexible yet efficient hardware architectures highly desirable. This paper presents a reconfigurable accelerator able to runtime adapt its computational capabilities to perform transposed convolution with different kernel sizes. When accommodated within the Xilinx XC7Z020 and XC7K410T chips, the proposed design dissipates less than 95 mW at 125MHz and 179 mW at 250MHz, exhibiting a throughput of 1.95 and 3.9 Giga output per second, respectively. Both the implementations overcome state-of-the-art counterparts, achieving an energy efficiency up to 4.4 times higher. When used to accelerate the Fast Super Resolution Convolutional Neural Networks, the novel reconfigurable architecture achieves an energy efficiency at least 23% better than the competitors.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Runtime Reconfigurable Hardware Accelerator for Energy-Efficient Transposed Convolutions\",\"authors\":\"Emanuel Marrazzo, F. Spagnolo, S. Perri\",\"doi\":\"10.1109/prime55000.2022.9816800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transposed convolution is a crucial operation in several computer vision applications, including emerging Convolutional Neural Networks for super-resolution, generative adversarial and segmentation tasks. Such algorithms deal with high computational loads and memory requirements, which hinder their implementation in real-time and power-constrained embedded systems. In addition, they may adopt different kernel sizes along the network, thus making the design of flexible yet efficient hardware architectures highly desirable. This paper presents a reconfigurable accelerator able to runtime adapt its computational capabilities to perform transposed convolution with different kernel sizes. When accommodated within the Xilinx XC7Z020 and XC7K410T chips, the proposed design dissipates less than 95 mW at 125MHz and 179 mW at 250MHz, exhibiting a throughput of 1.95 and 3.9 Giga output per second, respectively. Both the implementations overcome state-of-the-art counterparts, achieving an energy efficiency up to 4.4 times higher. When used to accelerate the Fast Super Resolution Convolutional Neural Networks, the novel reconfigurable architecture achieves an energy efficiency at least 23% better than the competitors.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

转置卷积是许多计算机视觉应用中的关键操作,包括用于超分辨率,生成对抗和分割任务的新兴卷积神经网络。这种算法处理高计算负载和内存需求,这阻碍了它们在实时和功耗受限的嵌入式系统中的实现。此外,它们可能在网络上采用不同的内核大小,因此非常需要设计灵活而高效的硬件体系结构。本文提出了一种可重构加速器,能够在运行时调整其计算能力来执行不同核大小的转置卷积。在Xilinx XC7Z020和XC7K410T芯片中,所提出的设计在125MHz和250MHz下的功耗分别小于95 mW和179 mW,分别显示每秒1.95和3.9 Giga的输出吞吐量。这两种实现方案都超越了最先进的同类产品,实现了高达4.4倍的能源效率。当用于加速快速超分辨率卷积神经网络时,这种新颖的可重构架构比竞争对手的能效提高了至少23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Runtime Reconfigurable Hardware Accelerator for Energy-Efficient Transposed Convolutions
Transposed convolution is a crucial operation in several computer vision applications, including emerging Convolutional Neural Networks for super-resolution, generative adversarial and segmentation tasks. Such algorithms deal with high computational loads and memory requirements, which hinder their implementation in real-time and power-constrained embedded systems. In addition, they may adopt different kernel sizes along the network, thus making the design of flexible yet efficient hardware architectures highly desirable. This paper presents a reconfigurable accelerator able to runtime adapt its computational capabilities to perform transposed convolution with different kernel sizes. When accommodated within the Xilinx XC7Z020 and XC7K410T chips, the proposed design dissipates less than 95 mW at 125MHz and 179 mW at 250MHz, exhibiting a throughput of 1.95 and 3.9 Giga output per second, respectively. Both the implementations overcome state-of-the-art counterparts, achieving an energy efficiency up to 4.4 times higher. When used to accelerate the Fast Super Resolution Convolutional Neural Networks, the novel reconfigurable architecture achieves an energy efficiency at least 23% better than the competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Formal Methods to Evaluate Hardware Reliability in the Presence of Soft Errors Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes Phase-change memory cells characterization in an analog in-memory computing perspective Analysis of Current-Reuse and Split-Voltage Topology for Biomedical Amplifier Arrays Influence of Amplitude and Phase Imbalance on a Y-band Bootstrapped Frequency Doubler using 130-nm SiGe Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1