基于gpu的SAR成像并行实现

Xingxing Jin, S. Ko
{"title":"基于gpu的SAR成像并行实现","authors":"Xingxing Jin, S. Ko","doi":"10.1109/ISED.2012.35","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) is an all-weather remote sensing technology and occupies a great position in disaster observation and geological mapping. The main challenge for SAR processing is the huge volume of raw data, which demands tremendous computation. This limits the utilization of SAR, especially for real-time applications. On the other hand, recent developments in Graphics Processing Unit (GPU) technology, which obtain general processing capability, high parallel computation performance, and ultra wide memory bandwidth, offer a novel method for computationally intensive applications. This work proposes a parallel implementation of SAR imaging on GPU via Compute Unified Device Architecture (CUDA), and provides a potential solution for SAR real-time processing. The results show that the proposed method obtained a speedup of 31.72, compared to a CPU platform.","PeriodicalId":276803,"journal":{"name":"2012 International Symposium on Electronic System Design (ISED)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GPU-based Parallel Implementation of SAR Imaging\",\"authors\":\"Xingxing Jin, S. Ko\",\"doi\":\"10.1109/ISED.2012.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar (SAR) is an all-weather remote sensing technology and occupies a great position in disaster observation and geological mapping. The main challenge for SAR processing is the huge volume of raw data, which demands tremendous computation. This limits the utilization of SAR, especially for real-time applications. On the other hand, recent developments in Graphics Processing Unit (GPU) technology, which obtain general processing capability, high parallel computation performance, and ultra wide memory bandwidth, offer a novel method for computationally intensive applications. This work proposes a parallel implementation of SAR imaging on GPU via Compute Unified Device Architecture (CUDA), and provides a potential solution for SAR real-time processing. The results show that the proposed method obtained a speedup of 31.72, compared to a CPU platform.\",\"PeriodicalId\":276803,\"journal\":{\"name\":\"2012 International Symposium on Electronic System Design (ISED)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Symposium on Electronic System Design (ISED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISED.2012.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Electronic System Design (ISED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISED.2012.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

合成孔径雷达(SAR)是一种全天候遥感技术,在灾害观测和地质填图中占有重要地位。SAR处理的主要挑战是原始数据量巨大,需要大量的计算。这限制了SAR的利用,特别是对于实时应用程序。另一方面,图形处理单元(GPU)技术的最新发展,获得了通用的处理能力、高并行计算性能和超宽存储带宽,为计算密集型应用提供了一种新的方法。本文提出了一种基于CUDA计算统一设备架构(CUDA)在GPU上并行实现SAR成像的方法,为SAR实时处理提供了一个潜在的解决方案。结果表明,与CPU平台相比,该方法获得了31.72的加速提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-based Parallel Implementation of SAR Imaging
Synthetic Aperture Radar (SAR) is an all-weather remote sensing technology and occupies a great position in disaster observation and geological mapping. The main challenge for SAR processing is the huge volume of raw data, which demands tremendous computation. This limits the utilization of SAR, especially for real-time applications. On the other hand, recent developments in Graphics Processing Unit (GPU) technology, which obtain general processing capability, high parallel computation performance, and ultra wide memory bandwidth, offer a novel method for computationally intensive applications. This work proposes a parallel implementation of SAR imaging on GPU via Compute Unified Device Architecture (CUDA), and provides a potential solution for SAR real-time processing. The results show that the proposed method obtained a speedup of 31.72, compared to a CPU platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-objective Low-Power CDFG Scheduling Using Fine-Grained DVS Architecture in Distributed Framework Improvement in Target Detectability Using Spread Spectrum Radar in Dispersive Channel Condition Systolic Variable Length Architecture for Discrete Fourier Transform in Long Term Evolution High Speed Generic Network Interface for Network on Chip Using Ping Pong Buffers Synthesis of Toffoli Networks: Status and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1