基于PPG信号特征特征的SpO2预测

B. Koteska, Hristina Mitrova, A. Bogdanova, F. Lehocki
{"title":"基于PPG信号特征特征的SpO2预测","authors":"B. Koteska, Hristina Mitrova, A. Bogdanova, F. Lehocki","doi":"10.1109/MeMeA54994.2022.9856498","DOIUrl":null,"url":null,"abstract":"Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 – 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits.","PeriodicalId":106228,"journal":{"name":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"86 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine learning based SpO2 prediction from PPG signal's characteristics features\",\"authors\":\"B. Koteska, Hristina Mitrova, A. Bogdanova, F. Lehocki\",\"doi\":\"10.1109/MeMeA54994.2022.9856498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 – 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits.\",\"PeriodicalId\":106228,\"journal\":{\"name\":\"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"86 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA54994.2022.9856498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA54994.2022.9856498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在紧急情况下,在高伤亡事件的第二次分诊期间持续监测血氧饱和度(SpO2),并确定患者/受害者的血液稳定性,直到到达医疗机构。使用附着在受害者胸部的SmartPatch设备,其中包含一个光电容积图波形(PPG)传感器,可以获得SpO2参数。我们在SmartPatch原型开发过程中的兴趣是通过使用嵌入式PPG传感器来研究血氧饱和度水平的监测。我们探索通过使用两个Python工具包HeartPy和Neurokit从PPG信号中提取特征集来获取Sp02,以便使用多重回归器对机器学习预测器进行建模。通过各种滤波技术对PPG信号进行预处理,去除低/高频噪声。该模型使用从52名SpO2水平从83 - 100%不等的受试者中收集的临床数据进行训练和测试。从两个工具包中提取7个特征,使用随机森林回归器进行实验,获得了MAE(1.45)、MSE(3.85)、RMSE(1.96)和RMSLE(0.02)得分的最佳实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning based SpO2 prediction from PPG signal's characteristics features
Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 – 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time and Frequency domain analysis of APB muscles Abduction in adult dominant hand using surface electromyography signals Comparison of Noise Reduction Techniques for Dysarthric Speech Recognition Effects of ROI positioning on the measurement of engineered muscle tissue contractility with an optical tracking method Atrial Fibrillation Detection by Means of Edge Computing on Wearable Device: A Feasibility Assessment Unraveling the biological meaning of radiomic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1