心电动态记录的心跳聚类识别心律失常

E. Delgado, J.L. Rodriguez, Favio Jiménez, D. Cuesta, G. Castellanos
{"title":"心电动态记录的心跳聚类识别心律失常","authors":"E. Delgado, J.L. Rodriguez, Favio Jiménez, D. Cuesta, G. Castellanos","doi":"10.1109/CIC.2007.4745446","DOIUrl":null,"url":null,"abstract":"The follow-up of some cardiac diseases may be achieved by ECG-holter record analysis. A heartbeat clustering method can be used to reduce the usually high computational cost of such Holter analysis. This study describes a method aimed at cardiac arrhythmia recognition based on this approach, by means of unsupervised inspection of morphologically similar heartbeat groups. Singular Value Decomposition (SVD) is used as the feature selection method since the complexity increases exponentially with the number of features. A modification of the k-means algorithm was developed for centroid computation, taking into account heartbeat length changes. Experimental set consisted of ECG records from the MIT database. The method yielded a 99.9% clustering accuracy considering pathological versus normal heartbeats. Both clustering error and critical error percentage was 0.01%.","PeriodicalId":406683,"journal":{"name":"2007 Computers in Cardiology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognition of cardiac arrhythmias by means of beat clustering on ECG-holter records\",\"authors\":\"E. Delgado, J.L. Rodriguez, Favio Jiménez, D. Cuesta, G. Castellanos\",\"doi\":\"10.1109/CIC.2007.4745446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The follow-up of some cardiac diseases may be achieved by ECG-holter record analysis. A heartbeat clustering method can be used to reduce the usually high computational cost of such Holter analysis. This study describes a method aimed at cardiac arrhythmia recognition based on this approach, by means of unsupervised inspection of morphologically similar heartbeat groups. Singular Value Decomposition (SVD) is used as the feature selection method since the complexity increases exponentially with the number of features. A modification of the k-means algorithm was developed for centroid computation, taking into account heartbeat length changes. Experimental set consisted of ECG records from the MIT database. The method yielded a 99.9% clustering accuracy considering pathological versus normal heartbeats. Both clustering error and critical error percentage was 0.01%.\",\"PeriodicalId\":406683,\"journal\":{\"name\":\"2007 Computers in Cardiology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Computers in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2007.4745446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2007.4745446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

一些心脏疾病的随访可以通过心电图记录分析来实现。心跳聚类方法可以用来减少这种动态心电图分析通常较高的计算成本。本研究描述了一种基于该方法的心律失常识别方法,通过对形态学相似的心跳组进行无监督检查。由于特征选择的复杂度随着特征数量的增加呈指数增长,因此采用奇异值分解(SVD)作为特征选择方法。对k-means算法进行了改进,用于质心计算,考虑了心跳长度的变化。实验集由麻省理工学院数据库中的心电图记录组成。考虑到病理心跳和正常心跳,该方法的聚类准确率为99.9%。聚类误差和临界误差百分比均为0.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of cardiac arrhythmias by means of beat clustering on ECG-holter records
The follow-up of some cardiac diseases may be achieved by ECG-holter record analysis. A heartbeat clustering method can be used to reduce the usually high computational cost of such Holter analysis. This study describes a method aimed at cardiac arrhythmia recognition based on this approach, by means of unsupervised inspection of morphologically similar heartbeat groups. Singular Value Decomposition (SVD) is used as the feature selection method since the complexity increases exponentially with the number of features. A modification of the k-means algorithm was developed for centroid computation, taking into account heartbeat length changes. Experimental set consisted of ECG records from the MIT database. The method yielded a 99.9% clustering accuracy considering pathological versus normal heartbeats. Both clustering error and critical error percentage was 0.01%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and use of a patient data management system in the intensive care unit: A two-year experience Modelling effects of sotalol on T-wave morphology Vulnerability to reentry in a 3D regionally ischemic ventricular slab preparation: A simulation study Evaluation of multi-component Electrocardiogram beat detection algorithms: Implications of three different noise artifacts Dynamic 4D blood flow representation in the aorta and analysis from cine-MRI in patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1