基于规则和机器学习相结合的意见挖掘中的方面-情感分类

Zulva Fachrina, D. H. Widyantoro
{"title":"基于规则和机器学习相结合的意见挖掘中的方面-情感分类","authors":"Zulva Fachrina, D. H. Widyantoro","doi":"10.1109/ICODSE.2017.8285850","DOIUrl":null,"url":null,"abstract":"Most online marketplaces in Indonesia provide review or feedback feature in order to enhance customer's satisfaction. However, there is a large number of unstructured opinions and every opinion can discuss one or more aspects. In this paper, we propose a combination of rule-based and machine learning approach to classify aspect and its sentiment of online marketplace opinions. We use Support Vector Machine and Naïve Bayes Classifier for classifying opinions. The evaluation uses 2960 reviews from various categories collected from Indonesian online marketplace site. The best method for quality, accuracy, service, communication, and delivery aspect is machine learning SVM with rule-based as one of the features while the best method for packaging and price aspect is using rule-based only. The average f-measures for all aspects ranging from 78.9% to 92%.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Aspect-sentiment classification in opinion mining using the combination of rule-based and machine learning\",\"authors\":\"Zulva Fachrina, D. H. Widyantoro\",\"doi\":\"10.1109/ICODSE.2017.8285850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most online marketplaces in Indonesia provide review or feedback feature in order to enhance customer's satisfaction. However, there is a large number of unstructured opinions and every opinion can discuss one or more aspects. In this paper, we propose a combination of rule-based and machine learning approach to classify aspect and its sentiment of online marketplace opinions. We use Support Vector Machine and Naïve Bayes Classifier for classifying opinions. The evaluation uses 2960 reviews from various categories collected from Indonesian online marketplace site. The best method for quality, accuracy, service, communication, and delivery aspect is machine learning SVM with rule-based as one of the features while the best method for packaging and price aspect is using rule-based only. The average f-measures for all aspects ranging from 78.9% to 92%.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

印度尼西亚的大多数在线市场都提供评论或反馈功能,以提高客户满意度。然而,存在大量的非结构化意见,每个意见都可以讨论一个或多个方面。在本文中,我们提出了一种基于规则和机器学习相结合的方法来对在线市场意见的方面及其情绪进行分类。我们使用支持向量机和Naïve贝叶斯分类器对意见进行分类。该评估使用了从印度尼西亚在线市场网站收集的各种类别的2960条评论。在质量、准确性、服务、沟通和交付方面,最好的方法是将基于规则作为特征之一的机器学习SVM,而在包装和价格方面,最好的方法是只使用基于规则的方法。各方面的平均f值从78.9%到92%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aspect-sentiment classification in opinion mining using the combination of rule-based and machine learning
Most online marketplaces in Indonesia provide review or feedback feature in order to enhance customer's satisfaction. However, there is a large number of unstructured opinions and every opinion can discuss one or more aspects. In this paper, we propose a combination of rule-based and machine learning approach to classify aspect and its sentiment of online marketplace opinions. We use Support Vector Machine and Naïve Bayes Classifier for classifying opinions. The evaluation uses 2960 reviews from various categories collected from Indonesian online marketplace site. The best method for quality, accuracy, service, communication, and delivery aspect is machine learning SVM with rule-based as one of the features while the best method for packaging and price aspect is using rule-based only. The average f-measures for all aspects ranging from 78.9% to 92%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid recommender system using random walk with restart for social tagging system Comparison of optimal path finding techniques for minimal diagnosis in mapping repair Cells identification of acute myeloid leukemia AML M0 and AML M1 using K-nearest neighbour based on morphological images Utility function based-mixed integer nonlinear programming (MINLP) problem model of information service pricing schemes Graph clustering using dirichlet process mixture model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1