南极洲西部布兰斯菲尔德海峡火山的深部结构与新实验数据

V. Soloviev, V. Bakhmutov, N. Yakymchuk, I. Korchagin, Kyiv Ukraine Geochemistry
{"title":"南极洲西部布兰斯菲尔德海峡火山的深部结构与新实验数据","authors":"V. Soloviev, V. Bakhmutov, N. Yakymchuk, I. Korchagin, Kyiv Ukraine Geochemistry","doi":"10.33275/1727-7485.1.2021.661","DOIUrl":null,"url":null,"abstract":"The aim of the study is to determine the existence of a complex magma-gas-fluid system of the West Antarctica northern volcanic branch in the Bransfield Strait. It consists of several different-level deep magma chambers with magmas raised directly from the mantle or the accumulation zone located at a depth of about 25–30 km. Research methods are based on the known idea that the Earth can be considered a spherical capacitor formed by various layers from its core to the surface with different parameters — thickness, permittivity, density, contact potential difference. Our experimental data show that there is a molten zone at 195–225 km where considerable part of volcanic roots is located. Certain structural patterns for land and submarine volcanic structures are revealed, and the first data on the deep migration channels of fluids in the Bransfield Strait are obtained. Volcanic channels are filled with different basic, ultramafic rocks, and sedimentary rocks too. The deep roots of volcanic structures' presence can be associated with the pulsed functioning of a gas-fluid channel with low viscosity. The gas-saturated melts form some zones of intermediate crystallization in the crust due to this channel. These studies showed that multiphase pulsed volcanic activity mainly through the vertical migration channels of deep fluids from the melting zone played a significant role in forming the tectonic diversity and the evolution of the Antarctic continental margin region structures. The results of modified methods of processing and decoding satellite images and photographs allow supplementing the understanding of the West Antarctica structures’ formation. These results of the Bransfield Strait magmatic systems studying indicate the need for further research to understand the mechanism of formation and evolution of structures and deep geospheres in different regions of the Earth.","PeriodicalId":370867,"journal":{"name":"Ukrainian Antarctic Journal","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep structure and new experimental data of the Bransfield Strait volcanoes (West Antarctica)\",\"authors\":\"V. Soloviev, V. Bakhmutov, N. Yakymchuk, I. Korchagin, Kyiv Ukraine Geochemistry\",\"doi\":\"10.33275/1727-7485.1.2021.661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the study is to determine the existence of a complex magma-gas-fluid system of the West Antarctica northern volcanic branch in the Bransfield Strait. It consists of several different-level deep magma chambers with magmas raised directly from the mantle or the accumulation zone located at a depth of about 25–30 km. Research methods are based on the known idea that the Earth can be considered a spherical capacitor formed by various layers from its core to the surface with different parameters — thickness, permittivity, density, contact potential difference. Our experimental data show that there is a molten zone at 195–225 km where considerable part of volcanic roots is located. Certain structural patterns for land and submarine volcanic structures are revealed, and the first data on the deep migration channels of fluids in the Bransfield Strait are obtained. Volcanic channels are filled with different basic, ultramafic rocks, and sedimentary rocks too. The deep roots of volcanic structures' presence can be associated with the pulsed functioning of a gas-fluid channel with low viscosity. The gas-saturated melts form some zones of intermediate crystallization in the crust due to this channel. These studies showed that multiphase pulsed volcanic activity mainly through the vertical migration channels of deep fluids from the melting zone played a significant role in forming the tectonic diversity and the evolution of the Antarctic continental margin region structures. The results of modified methods of processing and decoding satellite images and photographs allow supplementing the understanding of the West Antarctica structures’ formation. These results of the Bransfield Strait magmatic systems studying indicate the need for further research to understand the mechanism of formation and evolution of structures and deep geospheres in different regions of the Earth.\",\"PeriodicalId\":370867,\"journal\":{\"name\":\"Ukrainian Antarctic Journal\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Antarctic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33275/1727-7485.1.2021.661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Antarctic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33275/1727-7485.1.2021.661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项研究的目的是确定在南极洲西部的布兰斯菲尔德海峡北部火山分支存在一个复杂的岩浆-气体-流体系统。它由几个不同层次的深部岩浆房组成,岩浆直接从地幔或位于深度约25-30公里的聚集带中升起。研究方法是基于已知的想法,即地球可以被认为是一个球形电容器,由从其核心到表面的不同层组成,具有不同的参数-厚度,介电常数,密度,接触电位差。我们的实验数据表明,在195-225公里处存在一个熔岩区,其中相当一部分火山根位于此。揭示了陆地和海底火山构造的某些构造模式,并获得了布兰斯菲尔德海峡深部流体运移通道的初步资料。火山通道充满了不同的基性、超镁质岩石和沉积岩。火山构造的深层根源可能与低粘度气-流体通道的脉冲作用有关。由于这一通道的作用,饱和气体熔体在地壳中形成了一些中间结晶带。这些研究表明,多期脉冲火山活动主要通过熔融带深部流体的垂直迁移通道,对形成南极大陆边缘地区的构造多样性和构造演化起了重要作用。对卫星图像和照片进行处理和解码的改进方法的结果可以补充对南极洲西部构造形成的了解。这些研究结果表明,需要进一步研究以了解地球不同地区构造和深部地圈的形成和演化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep structure and new experimental data of the Bransfield Strait volcanoes (West Antarctica)
The aim of the study is to determine the existence of a complex magma-gas-fluid system of the West Antarctica northern volcanic branch in the Bransfield Strait. It consists of several different-level deep magma chambers with magmas raised directly from the mantle or the accumulation zone located at a depth of about 25–30 km. Research methods are based on the known idea that the Earth can be considered a spherical capacitor formed by various layers from its core to the surface with different parameters — thickness, permittivity, density, contact potential difference. Our experimental data show that there is a molten zone at 195–225 km where considerable part of volcanic roots is located. Certain structural patterns for land and submarine volcanic structures are revealed, and the first data on the deep migration channels of fluids in the Bransfield Strait are obtained. Volcanic channels are filled with different basic, ultramafic rocks, and sedimentary rocks too. The deep roots of volcanic structures' presence can be associated with the pulsed functioning of a gas-fluid channel with low viscosity. The gas-saturated melts form some zones of intermediate crystallization in the crust due to this channel. These studies showed that multiphase pulsed volcanic activity mainly through the vertical migration channels of deep fluids from the melting zone played a significant role in forming the tectonic diversity and the evolution of the Antarctic continental margin region structures. The results of modified methods of processing and decoding satellite images and photographs allow supplementing the understanding of the West Antarctica structures’ formation. These results of the Bransfield Strait magmatic systems studying indicate the need for further research to understand the mechanism of formation and evolution of structures and deep geospheres in different regions of the Earth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benthic wildlife underwater video recording during longline survey in Weddell Sea Modelling seasonal and intraseasonal variations of circulation,temperature, salinity and sea level in the Bellingshausen Seaand on the Antarctic Peninsula shelf Microclimatic variations of land surface temperatureon Galindez Island (western part of the Antarctic Peninsula) Assessment of the zonal asymmetry trend in Antarctic total ozonecolumn using TOMS measurements and CCMVal-2 models Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1