基于动态时间翘曲和约束k-介质聚类的索引跟踪

Ran Zhang, Hongzong Li, Jun Wang
{"title":"基于动态时间翘曲和约束k-介质聚类的索引跟踪","authors":"Ran Zhang, Hongzong Li, Jun Wang","doi":"10.1109/ICICIP53388.2021.9642192","DOIUrl":null,"url":null,"abstract":"Index tracking is a passive investment strategy by replicating a financial market index using its constituents. In this paper, index tracking is addressed based on $k-$medoids clustering. $k-$medoids clustering is formulated as a valuation-constrained $k-$median problem to cluster index constituents. The dissimilarity coefficients among stocks are measured by using dynamic time warping. Experimental results of index tracking on four major indices are elaborated to demonstrate that the tracking performance of the proposed method with dynamic time warping is superior to that with Pearson correlation coefficients.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Index Tracking Based on Dynamic Time Warping and Constrained k-medoids Clustering\",\"authors\":\"Ran Zhang, Hongzong Li, Jun Wang\",\"doi\":\"10.1109/ICICIP53388.2021.9642192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Index tracking is a passive investment strategy by replicating a financial market index using its constituents. In this paper, index tracking is addressed based on $k-$medoids clustering. $k-$medoids clustering is formulated as a valuation-constrained $k-$median problem to cluster index constituents. The dissimilarity coefficients among stocks are measured by using dynamic time warping. Experimental results of index tracking on four major indices are elaborated to demonstrate that the tracking performance of the proposed method with dynamic time warping is superior to that with Pearson correlation coefficients.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

指数跟踪是一种被动的投资策略,通过使用其组成部分复制金融市场指数。本文研究了基于$k-$ medioids聚类的索引跟踪问题。$k-$medoids聚类是一个估值受限的$k-$中位数问题,用于聚类指数成分。采用动态时间规整的方法测量了股票间的不相似系数。对4个主要指标进行了跟踪实验,结果表明,采用动态时间规整方法的跟踪性能优于采用Pearson相关系数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Index Tracking Based on Dynamic Time Warping and Constrained k-medoids Clustering
Index tracking is a passive investment strategy by replicating a financial market index using its constituents. In this paper, index tracking is addressed based on $k-$medoids clustering. $k-$medoids clustering is formulated as a valuation-constrained $k-$median problem to cluster index constituents. The dissimilarity coefficients among stocks are measured by using dynamic time warping. Experimental results of index tracking on four major indices are elaborated to demonstrate that the tracking performance of the proposed method with dynamic time warping is superior to that with Pearson correlation coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1