Dawen Liang, Jaan Altosaar, Laurent Charlin, D. Blei
{"title":"因式分解满足项嵌入:具有项共现性的正则矩阵因式分解","authors":"Dawen Liang, Jaan Altosaar, Laurent Charlin, D. Blei","doi":"10.1145/2959100.2959182","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) models and their extensions are standard in modern recommender systems. MF models decompose the observed user-item interaction matrix into user and item latent factors. In this paper, we propose a co-factorization model, CoFactor, which jointly decomposes the user-item interaction matrix and the item-item co-occurrence matrix with shared item latent factors. For each pair of items, the co-occurrence matrix encodes the number of users that have consumed both items. CoFactor is inspired by the recent success of word embedding models (e.g., word2vec) which can be interpreted as factorizing the word co-occurrence matrix. We show that this model significantly improves the performance over MF models on several datasets with little additional computational overhead. We provide qualitative results that explain how CoFactor improves the quality of the inferred factors and characterize the circumstances where it provides the most significant improvements.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"249","resultStr":"{\"title\":\"Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence\",\"authors\":\"Dawen Liang, Jaan Altosaar, Laurent Charlin, D. Blei\",\"doi\":\"10.1145/2959100.2959182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization (MF) models and their extensions are standard in modern recommender systems. MF models decompose the observed user-item interaction matrix into user and item latent factors. In this paper, we propose a co-factorization model, CoFactor, which jointly decomposes the user-item interaction matrix and the item-item co-occurrence matrix with shared item latent factors. For each pair of items, the co-occurrence matrix encodes the number of users that have consumed both items. CoFactor is inspired by the recent success of word embedding models (e.g., word2vec) which can be interpreted as factorizing the word co-occurrence matrix. We show that this model significantly improves the performance over MF models on several datasets with little additional computational overhead. We provide qualitative results that explain how CoFactor improves the quality of the inferred factors and characterize the circumstances where it provides the most significant improvements.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"249\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence
Matrix factorization (MF) models and their extensions are standard in modern recommender systems. MF models decompose the observed user-item interaction matrix into user and item latent factors. In this paper, we propose a co-factorization model, CoFactor, which jointly decomposes the user-item interaction matrix and the item-item co-occurrence matrix with shared item latent factors. For each pair of items, the co-occurrence matrix encodes the number of users that have consumed both items. CoFactor is inspired by the recent success of word embedding models (e.g., word2vec) which can be interpreted as factorizing the word co-occurrence matrix. We show that this model significantly improves the performance over MF models on several datasets with little additional computational overhead. We provide qualitative results that explain how CoFactor improves the quality of the inferred factors and characterize the circumstances where it provides the most significant improvements.