基于进化神经网络的深基坑支护结构位移反分析

Shengli Zhao, Yan Liu
{"title":"基于进化神经网络的深基坑支护结构位移反分析","authors":"Shengli Zhao, Yan Liu","doi":"10.1109/ICWAPR.2009.5207405","DOIUrl":null,"url":null,"abstract":"An evolutionary neural network method of displacement back analysis on supporting structure of deep foundation pit is proposed to search the optimal mechanical parameters. First, the BP network replaces the time-consuming finite element method to establish the non-linear relationship between the values of deep foundation pit mechanical parameters and displacement of its supporting structure, then genetic algorithm is used as an optimization method to search the optimal mechanical parameters in their global ranges. Application of this methodology is illustrated with a numerical example and reasonable results are yielded.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Displacement back analysis on supporting structure of deep foundation pit based on evolutionary neural nrtwork\",\"authors\":\"Shengli Zhao, Yan Liu\",\"doi\":\"10.1109/ICWAPR.2009.5207405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An evolutionary neural network method of displacement back analysis on supporting structure of deep foundation pit is proposed to search the optimal mechanical parameters. First, the BP network replaces the time-consuming finite element method to establish the non-linear relationship between the values of deep foundation pit mechanical parameters and displacement of its supporting structure, then genetic algorithm is used as an optimization method to search the optimal mechanical parameters in their global ranges. Application of this methodology is illustrated with a numerical example and reasonable results are yielded.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种深基坑支护结构位移反分析的进化神经网络方法,以寻找最优力学参数。首先,用BP网络取代耗时的有限元方法,建立深基坑支护结构的力学参数值与位移之间的非线性关系,然后采用遗传算法作为优化方法,在其全局范围内搜索最优力学参数。通过一个算例说明了该方法的应用,得到了合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Displacement back analysis on supporting structure of deep foundation pit based on evolutionary neural nrtwork
An evolutionary neural network method of displacement back analysis on supporting structure of deep foundation pit is proposed to search the optimal mechanical parameters. First, the BP network replaces the time-consuming finite element method to establish the non-linear relationship between the values of deep foundation pit mechanical parameters and displacement of its supporting structure, then genetic algorithm is used as an optimization method to search the optimal mechanical parameters in their global ranges. Application of this methodology is illustrated with a numerical example and reasonable results are yielded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1