{"title":"利用乘法器交替方向法结合层次半可分核近似训练超大规模非线性支持向量机","authors":"S. Cipolla, J. Gondzio","doi":"10.1016/j.ejco.2022.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher classification quality when compared to linear ones but, at the same time, their computational complexity is prohibitive for large-scale datasets: this drawback is essentially related to the necessity to store and manipulate large, dense and unstructured kernel matrices. Despite the fact that at the core of training an SVM there is a <em>simple</em> convex optimization problem, the presence of kernel matrices is responsible for dramatic performance reduction, making SVMs unworkably slow for large problems. Aiming at an efficient solution of large-scale nonlinear SVM problems, we propose the use of the <em>Alternating Direction Method of Multipliers</em> coupled with <em>Hierarchically Semi-Separable</em> (HSS) kernel approximations. As shown in this work, the detailed analysis of the interaction among their algorithmic components unveils a particularly efficient framework and indeed, the presented experimental results demonstrate, in the case of Radial Basis Kernels, a significant speed-up when compared to the <em>state-of-the-art</em> nonlinear SVM libraries (without significantly affecting the classification accuracy).</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100046"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000223/pdfft?md5=f2bf24cfecce1c28928c1acc1630dd05&pid=1-s2.0-S2192440622000223-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations\",\"authors\":\"S. Cipolla, J. Gondzio\",\"doi\":\"10.1016/j.ejco.2022.100046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher classification quality when compared to linear ones but, at the same time, their computational complexity is prohibitive for large-scale datasets: this drawback is essentially related to the necessity to store and manipulate large, dense and unstructured kernel matrices. Despite the fact that at the core of training an SVM there is a <em>simple</em> convex optimization problem, the presence of kernel matrices is responsible for dramatic performance reduction, making SVMs unworkably slow for large problems. Aiming at an efficient solution of large-scale nonlinear SVM problems, we propose the use of the <em>Alternating Direction Method of Multipliers</em> coupled with <em>Hierarchically Semi-Separable</em> (HSS) kernel approximations. As shown in this work, the detailed analysis of the interaction among their algorithmic components unveils a particularly efficient framework and indeed, the presented experimental results demonstrate, in the case of Radial Basis Kernels, a significant speed-up when compared to the <em>state-of-the-art</em> nonlinear SVM libraries (without significantly affecting the classification accuracy).</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"10 \",\"pages\":\"Article 100046\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000223/pdfft?md5=f2bf24cfecce1c28928c1acc1630dd05&pid=1-s2.0-S2192440622000223-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Training very large scale nonlinear SVMs using Alternating Direction Method of Multipliers coupled with the Hierarchically Semi-Separable kernel approximations
Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher classification quality when compared to linear ones but, at the same time, their computational complexity is prohibitive for large-scale datasets: this drawback is essentially related to the necessity to store and manipulate large, dense and unstructured kernel matrices. Despite the fact that at the core of training an SVM there is a simple convex optimization problem, the presence of kernel matrices is responsible for dramatic performance reduction, making SVMs unworkably slow for large problems. Aiming at an efficient solution of large-scale nonlinear SVM problems, we propose the use of the Alternating Direction Method of Multipliers coupled with Hierarchically Semi-Separable (HSS) kernel approximations. As shown in this work, the detailed analysis of the interaction among their algorithmic components unveils a particularly efficient framework and indeed, the presented experimental results demonstrate, in the case of Radial Basis Kernels, a significant speed-up when compared to the state-of-the-art nonlinear SVM libraries (without significantly affecting the classification accuracy).
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.