基于机器学习方法的分布式敏捷软件开发任务分配

P. William, Pardeep Kumar, Gurpreet Singh Chhabra, K. Vengatesan
{"title":"基于机器学习方法的分布式敏捷软件开发任务分配","authors":"P. William, Pardeep Kumar, Gurpreet Singh Chhabra, K. Vengatesan","doi":"10.1109/CENTCON52345.2021.9688114","DOIUrl":null,"url":null,"abstract":"In the 21st century, agile software development (ASD) has emerged as one of the prominent software development techniques. Every major global company has moved to ASD as a means of reducing costs. In pursuit of huge markets and cheap cost of labour, the industry has shifted to a Distributed Agile Software Development (DASD) environment. As a consequence of improper job allocation, clients may refuse to accept the project, team members may be demonized, and the project may collapse. Numerous scholars have spent the past decade researching different techniques for work allocation in Distributed Agile settings, and the results have been promising. Ontologies and Bayesian networks were among the techniques they employed. This is a list of brute force techniques that may be useful in certain situations. Additionally, these methods have not been used to distributed Agile software development job allocation. The purpose of this article is to design and implement a method for job allocation in distributed Agile software development that is based on machine learning. The findings indicate that the suggested model is more accurate in terms of task assignment.","PeriodicalId":103865,"journal":{"name":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Task Allocation in Distributed Agile Software Development using Machine Learning Approach\",\"authors\":\"P. William, Pardeep Kumar, Gurpreet Singh Chhabra, K. Vengatesan\",\"doi\":\"10.1109/CENTCON52345.2021.9688114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 21st century, agile software development (ASD) has emerged as one of the prominent software development techniques. Every major global company has moved to ASD as a means of reducing costs. In pursuit of huge markets and cheap cost of labour, the industry has shifted to a Distributed Agile Software Development (DASD) environment. As a consequence of improper job allocation, clients may refuse to accept the project, team members may be demonized, and the project may collapse. Numerous scholars have spent the past decade researching different techniques for work allocation in Distributed Agile settings, and the results have been promising. Ontologies and Bayesian networks were among the techniques they employed. This is a list of brute force techniques that may be useful in certain situations. Additionally, these methods have not been used to distributed Agile software development job allocation. The purpose of this article is to design and implement a method for job allocation in distributed Agile software development that is based on machine learning. The findings indicate that the suggested model is more accurate in terms of task assignment.\",\"PeriodicalId\":103865,\"journal\":{\"name\":\"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENTCON52345.2021.9688114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENTCON52345.2021.9688114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在21世纪,敏捷软件开发(ASD)已经成为突出的软件开发技术之一。每个主要的全球公司都将ASD作为降低成本的一种手段。为了追求巨大的市场和廉价的劳动力成本,业界已经转向分布式敏捷软件开发(DASD)环境。由于工作分配不当,客户可能拒绝接受项目,团队成员可能被妖魔化,项目可能崩溃。在过去的十年里,许多学者都在研究分布式敏捷环境下工作分配的不同技术,并取得了令人鼓舞的成果。本体论和贝叶斯网络是他们使用的技术之一。这是在某些情况下可能有用的暴力破解技术列表。此外,这些方法还没有被用于分布式敏捷软件开发的任务分配。本文的目的是设计和实现一种基于机器学习的分布式敏捷软件开发中的任务分配方法。研究结果表明,该模型在任务分配方面更为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Allocation in Distributed Agile Software Development using Machine Learning Approach
In the 21st century, agile software development (ASD) has emerged as one of the prominent software development techniques. Every major global company has moved to ASD as a means of reducing costs. In pursuit of huge markets and cheap cost of labour, the industry has shifted to a Distributed Agile Software Development (DASD) environment. As a consequence of improper job allocation, clients may refuse to accept the project, team members may be demonized, and the project may collapse. Numerous scholars have spent the past decade researching different techniques for work allocation in Distributed Agile settings, and the results have been promising. Ontologies and Bayesian networks were among the techniques they employed. This is a list of brute force techniques that may be useful in certain situations. Additionally, these methods have not been used to distributed Agile software development job allocation. The purpose of this article is to design and implement a method for job allocation in distributed Agile software development that is based on machine learning. The findings indicate that the suggested model is more accurate in terms of task assignment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Open Defect Faults in Single 6T SRAM Cell Using R and C Parasitic Extraction Method Python Data Analytics of Influence on Temperature and Humidity of City from Mountains: Case Study of Chengdu Qingcheng Mountains Determinant Effects of using Toilet Cleaners on Indoor Air Quality Hate Speech Detection using Text and Image Tweets Based On Bi-directional Long Short-Term Memory Improving Cloud Security and Privacy Using Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1