两种信息理论谱估计器的实验比较

R. C. Papademetriou
{"title":"两种信息理论谱估计器的实验比较","authors":"R. C. Papademetriou","doi":"10.1109/ICOSP.1998.770170","DOIUrl":null,"url":null,"abstract":"The use of the minimum cross-entropy (MCE) principle in spectrum estimation, resulting in an information-theoretic method that explicitly includes prior spectral information, has followed two philosophically different pathways leading to two distinct estimators, cross-entropy (CE) and spectral cross-entropy (SCE) respectively. These estimators are compared experimentally, regarding resolvability and fidelity. The data model assumed consists of two equal-amplitude sinusoidal signals, immersed in 1/f noise. The CE estimator appears to have evident superiority in this study.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental comparison of two information-theoretic spectral estimators\",\"authors\":\"R. C. Papademetriou\",\"doi\":\"10.1109/ICOSP.1998.770170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of the minimum cross-entropy (MCE) principle in spectrum estimation, resulting in an information-theoretic method that explicitly includes prior spectral information, has followed two philosophically different pathways leading to two distinct estimators, cross-entropy (CE) and spectral cross-entropy (SCE) respectively. These estimators are compared experimentally, regarding resolvability and fidelity. The data model assumed consists of two equal-amplitude sinusoidal signals, immersed in 1/f noise. The CE estimator appears to have evident superiority in this study.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最小交叉熵(MCE)原理在频谱估计中的应用,产生了一种明确包含先验频谱信息的信息论方法,遵循了两种不同的哲学途径,分别产生了两个不同的估计量,交叉熵(CE)和谱交叉熵(SCE)。对这些估计器在可分辨性和保真度方面进行了实验比较。假设的数据模型由两个等幅正弦信号组成,浸入1/f噪声中。CE估计器在本研究中具有明显的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental comparison of two information-theoretic spectral estimators
The use of the minimum cross-entropy (MCE) principle in spectrum estimation, resulting in an information-theoretic method that explicitly includes prior spectral information, has followed two philosophically different pathways leading to two distinct estimators, cross-entropy (CE) and spectral cross-entropy (SCE) respectively. These estimators are compared experimentally, regarding resolvability and fidelity. The data model assumed consists of two equal-amplitude sinusoidal signals, immersed in 1/f noise. The CE estimator appears to have evident superiority in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new estimation formula for minimum filter length of optimum FIR digital filters A fuzzy associative memory pattern classifier Randomized method for planar motion estimation and matching points A robust speech feature-perceptive scalogram based on wavelet analysis A new class of feature-orientated motion estimation for motion pictures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1