基于AlGaN/GaN异质结构的高性能太阳盲光电探测器

Z. Allam, A. Hamdoune, A. Soufi, Chahrazed Boudaoud
{"title":"基于AlGaN/GaN异质结构的高性能太阳盲光电探测器","authors":"Z. Allam, A. Hamdoune, A. Soufi, Chahrazed Boudaoud","doi":"10.1109/NAWDMPV.2014.6997616","DOIUrl":null,"url":null,"abstract":"Development of wide-band gap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visible- or solar-blind detection, which would eliminate the need for expensive and efficiency-limiting optical filters to remove out-of-band visible or solar photons. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy. In this paper, we considered an AlGaN/GaN photodetector grown on sapphire substrate. We studied I-V characteristics and we simulated the current as a function of voltage in darkness; we got a dark current of order 10-7 for a concentration of 1e19 cm-3. In the spectral response, we obtained a high current and flux spectral density for a wavelength of 350 nm for different x.","PeriodicalId":149945,"journal":{"name":"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"High-performance solar-blind photodetector based on AlGaN/GaN heterostructure\",\"authors\":\"Z. Allam, A. Hamdoune, A. Soufi, Chahrazed Boudaoud\",\"doi\":\"10.1109/NAWDMPV.2014.6997616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of wide-band gap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visible- or solar-blind detection, which would eliminate the need for expensive and efficiency-limiting optical filters to remove out-of-band visible or solar photons. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy. In this paper, we considered an AlGaN/GaN photodetector grown on sapphire substrate. We studied I-V characteristics and we simulated the current as a function of voltage in darkness; we got a dark current of order 10-7 for a concentration of 1e19 cm-3. In the spectral response, we obtained a high current and flux spectral density for a wavelength of 350 nm for different x.\",\"PeriodicalId\":149945,\"journal\":{\"name\":\"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAWDMPV.2014.6997616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAWDMPV.2014.6997616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自20世纪90年代以来,宽带隙iii -氮化物半导体的发展一直是一个备受关注的主题,主要是由于对蓝色激光器和高亮度发光二极管(led)的追求。同时,iii -氮化物已被广泛研究用于紫外(UV)光电探测器,因为它们提供固有的可见光或太阳盲检测,这将消除对昂贵和效率限制的光学滤光片的需要,以去除带外可见光或太阳光子。这种探测器将非常适合在国防、商业和科学领域的众多应用,包括隐蔽的空间对空间通信、早期导弹威胁探测、化学和生物威胁探测和光谱学、火焰探测和监测、紫外线环境监测和紫外线天文学。在本文中,我们考虑了一种生长在蓝宝石衬底上的AlGaN/GaN光电探测器。我们研究了I-V特性,并在黑暗中模拟了电流作为电压的函数;我们得到浓度为1e19 cm-3的暗电流为10-7阶。在光谱响应中,我们在波长为350 nm的不同x下获得了较高的电流和通量光谱密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-performance solar-blind photodetector based on AlGaN/GaN heterostructure
Development of wide-band gap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visible- or solar-blind detection, which would eliminate the need for expensive and efficiency-limiting optical filters to remove out-of-band visible or solar photons. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy. In this paper, we considered an AlGaN/GaN photodetector grown on sapphire substrate. We studied I-V characteristics and we simulated the current as a function of voltage in darkness; we got a dark current of order 10-7 for a concentration of 1e19 cm-3. In the spectral response, we obtained a high current and flux spectral density for a wavelength of 350 nm for different x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and properties of Au/PVP/p-Si/Al heterojunction diode Theory study of structural properties of copper halides Electrical simulation of organic solar cell based on CuPc/C60 heterojunctions Dielectric and electrical properties of PANI composite films Ab-initio calculations of structural, electronic, and dielectric properties of ZnO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1