Woohyeok Choi, Je-ho Oh, Taiwoo Park, Seongjun Kang, Miri Moon, Uichin Lee, Inseok Hwang, Junehwa Song
{"title":"MobyDick:一款多人互动游泳游戏","authors":"Woohyeok Choi, Je-ho Oh, Taiwoo Park, Seongjun Kang, Miri Moon, Uichin Lee, Inseok Hwang, Junehwa Song","doi":"10.1145/2668332.2668352","DOIUrl":null,"url":null,"abstract":"The unique aquatic nature of swimming makes it very difficult to use social or technical strategies to mitigate the tediousness of monotonous exercises. In this study, we propose MobyDick, a smartphone-based multi-player exergame designed to be used while swimming, in which a team of swimmers collaborate to hunt down a virtual monster. In this paper, we present a novel, holistic game design that takes into account both human factors and technical challenges. Firstly, we perform a comparative analysis of a variety of wireless networking technologies in the aquatic environment and identify various technical constraints on wireless networking. Secondly, we develop a single phone-based inertial and barometric stroke activity recognition system to enable precise, real-time game inputs. Thirdly, we carefully devise a multi-player interaction mode viable in the underwater environment highly limiting the abilities of human communication. Finally, we prototype MobyDick on waterproof off-the-shelf Android phones, and deploy it to real swimming pool environments (n = 8). Our qualitative analysis of user interview data reveals certain unique aspects of multi-player swimming games.","PeriodicalId":223777,"journal":{"name":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"MobyDick: an interactive multi-swimmer exergame\",\"authors\":\"Woohyeok Choi, Je-ho Oh, Taiwoo Park, Seongjun Kang, Miri Moon, Uichin Lee, Inseok Hwang, Junehwa Song\",\"doi\":\"10.1145/2668332.2668352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique aquatic nature of swimming makes it very difficult to use social or technical strategies to mitigate the tediousness of monotonous exercises. In this study, we propose MobyDick, a smartphone-based multi-player exergame designed to be used while swimming, in which a team of swimmers collaborate to hunt down a virtual monster. In this paper, we present a novel, holistic game design that takes into account both human factors and technical challenges. Firstly, we perform a comparative analysis of a variety of wireless networking technologies in the aquatic environment and identify various technical constraints on wireless networking. Secondly, we develop a single phone-based inertial and barometric stroke activity recognition system to enable precise, real-time game inputs. Thirdly, we carefully devise a multi-player interaction mode viable in the underwater environment highly limiting the abilities of human communication. Finally, we prototype MobyDick on waterproof off-the-shelf Android phones, and deploy it to real swimming pool environments (n = 8). Our qualitative analysis of user interview data reveals certain unique aspects of multi-player swimming games.\",\"PeriodicalId\":223777,\"journal\":{\"name\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668332.2668352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668332.2668352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The unique aquatic nature of swimming makes it very difficult to use social or technical strategies to mitigate the tediousness of monotonous exercises. In this study, we propose MobyDick, a smartphone-based multi-player exergame designed to be used while swimming, in which a team of swimmers collaborate to hunt down a virtual monster. In this paper, we present a novel, holistic game design that takes into account both human factors and technical challenges. Firstly, we perform a comparative analysis of a variety of wireless networking technologies in the aquatic environment and identify various technical constraints on wireless networking. Secondly, we develop a single phone-based inertial and barometric stroke activity recognition system to enable precise, real-time game inputs. Thirdly, we carefully devise a multi-player interaction mode viable in the underwater environment highly limiting the abilities of human communication. Finally, we prototype MobyDick on waterproof off-the-shelf Android phones, and deploy it to real swimming pool environments (n = 8). Our qualitative analysis of user interview data reveals certain unique aspects of multi-player swimming games.