Afluqfy Harahap, Ade Luthfi Ramadhan Perangin-Angin, K. Kumar, Saut Parsaoran Parsaoran
{"title":"ANALISIS PENERAPAN DATA MINING DALAM PENENTUAN TATA LETAK BARANG MENGGUNAKAN ALGORITMA APRIORI DAN FP-GROWTH","authors":"Afluqfy Harahap, Ade Luthfi Ramadhan Perangin-Angin, K. Kumar, Saut Parsaoran Parsaoran","doi":"10.37600/tekinkom.v5i2.692","DOIUrl":null,"url":null,"abstract":"Setting the layout of merchandise in each store window greatly affects consumer interest in shopping. To increase self-service sales, a strategy is needed to achieve this, one of which is to systematically arrange the layout of goods on merchandise shelves. The method used for implementing the layout of goods is to compare the performance of the Apriori Algorithm and the FP-Growth Algorithm in the data mining process using the Rapidminer Studio Educational Version 9.10.011 tools to obtain more accurate results. The data sample used is sales data at the Mohare Supermarket, which is tested to understand the association patterns generated by each method. Based on the test results with a minimum support of 20% and a minimum confidence of 70%, the Apriori Algorithm produces 10 rules with a support of 0.32258605 and an accuracy of 12.8%, while the FP-Growth Algorithm produces 78 rules with a support of 2.51612903 with an accuracy of 780%. Thus, the FP-Growth Algorithm can be stated to have a high degree of accuracy in generating association rules when compared to the Apriori Algorithm.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v5i2.692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设置每个商店橱窗的商品布局会极大地影响消费者的购物兴趣。要增加自助销售,需要有一个策略来实现这一点,其中之一就是系统地安排商品在商品货架上的布局。实现商品布局的方法是使用Rapidminer Studio Educational Version 9.10.011工具,比较Apriori算法和FP-Growth算法在数据挖掘过程中的性能,以获得更准确的结果。使用的数据样本是Mohare Supermarket的销售数据,对其进行了测试,以理解每种方法生成的关联模式。基于最小支持度为20%,最小置信度为70%的测试结果,Apriori算法生成10条规则,支持度为0.32258605,准确率为12.8%,FP-Growth算法生成78条规则,支持度为2.51612903,准确率为780%。因此,与Apriori算法相比,FP-Growth算法在生成关联规则方面具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANALISIS PENERAPAN DATA MINING DALAM PENENTUAN TATA LETAK BARANG MENGGUNAKAN ALGORITMA APRIORI DAN FP-GROWTH
Setting the layout of merchandise in each store window greatly affects consumer interest in shopping. To increase self-service sales, a strategy is needed to achieve this, one of which is to systematically arrange the layout of goods on merchandise shelves. The method used for implementing the layout of goods is to compare the performance of the Apriori Algorithm and the FP-Growth Algorithm in the data mining process using the Rapidminer Studio Educational Version 9.10.011 tools to obtain more accurate results. The data sample used is sales data at the Mohare Supermarket, which is tested to understand the association patterns generated by each method. Based on the test results with a minimum support of 20% and a minimum confidence of 70%, the Apriori Algorithm produces 10 rules with a support of 0.32258605 and an accuracy of 12.8%, while the FP-Growth Algorithm produces 78 rules with a support of 2.51612903 with an accuracy of 780%. Thus, the FP-Growth Algorithm can be stated to have a high degree of accuracy in generating association rules when compared to the Apriori Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUASI USABILITY PADA APLIKASI IMMERSIVE STORY TELLING SATUA I BELOG IMPLEMENTASI TEKNOLOGI VIRTUAL DALAM VISUALISASI PENGENALAN KAMPUS MENGGUNAKAN WEBVR PENGEBANGAN MEDIA INTERAKTIF BERORIENTASI HOTS (HIGHER ORDER THINGKING SKILLS) PADA MATAPELAJARAN BILOGI BERBASIS ANDROID SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN OBYEK WISATA TERBAIK DI KABUPATEN SRAGEN DENGAN METODE WEIGHTED PRODUCT DATA MINING UNTUK KLASIFIKASI STATUS PANDEMI COVID 19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1