使用多个词汇填充符的词汇外单词建模

Gilles Boulianne, P. Dumouchel
{"title":"使用多个词汇填充符的词汇外单词建模","authors":"Gilles Boulianne, P. Dumouchel","doi":"10.1109/ASRU.2001.1034628","DOIUrl":null,"url":null,"abstract":"In large vocabulary speech recognition, out-of-vocabulary words are an important cause of errors. We describe a lexical filler model that can be used in a single pass recognition system to detect out-of-vocabulary words and reduce the error rate. When rescoring word graphs with better acoustic models, word fillers cause a combinatorial explosion. We introduce a new technique, using several thousand lexical fillers, which produces word graphs that can be rescored efficiently. On a large French vocabulary continuous speech recognition task, lexical fillers achieved an OOV detection rate of 44% and allowed a 23% reduction in errors due to OOV words.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Out-of-vocabulary word modeling using multiple lexical fillers\",\"authors\":\"Gilles Boulianne, P. Dumouchel\",\"doi\":\"10.1109/ASRU.2001.1034628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large vocabulary speech recognition, out-of-vocabulary words are an important cause of errors. We describe a lexical filler model that can be used in a single pass recognition system to detect out-of-vocabulary words and reduce the error rate. When rescoring word graphs with better acoustic models, word fillers cause a combinatorial explosion. We introduce a new technique, using several thousand lexical fillers, which produces word graphs that can be rescored efficiently. On a large French vocabulary continuous speech recognition task, lexical fillers achieved an OOV detection rate of 44% and allowed a 23% reduction in errors due to OOV words.\",\"PeriodicalId\":118671,\"journal\":{\"name\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2001.1034628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在大词汇量语音识别中,词汇外词是产生错误的重要原因。我们描述了一个词汇填充模型,该模型可用于单次识别系统中检测词汇外的单词并降低错误率。当用更好的声学模型重新记录词图时,词填充会导致组合爆炸。我们引入了一种新技术,使用数千个词汇填充器,生成可以有效恢复的词图。在一个大型法语词汇连续语音识别任务中,词汇填充物实现了44%的OOV检测率,并使由于OOV单词导致的错误减少了23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Out-of-vocabulary word modeling using multiple lexical fillers
In large vocabulary speech recognition, out-of-vocabulary words are an important cause of errors. We describe a lexical filler model that can be used in a single pass recognition system to detect out-of-vocabulary words and reduce the error rate. When rescoring word graphs with better acoustic models, word fillers cause a combinatorial explosion. We introduce a new technique, using several thousand lexical fillers, which produces word graphs that can be rescored efficiently. On a large French vocabulary continuous speech recognition task, lexical fillers achieved an OOV detection rate of 44% and allowed a 23% reduction in errors due to OOV words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Example-based query generation for spontaneous speech Multilingual acoustic models for the recognition of non-native speech A comparative study of model-based adaptation techniques for a compact speech recognizer Trend tying in the segmental-feature HMM Estimated rank pruning and Java-based speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1