C. Duncan, M. S. Dennis, A. Kalman, Kevin Anand Stein, Yonas Tesfaye, Bryan I-Ming Lin, E. Truong-Cao, C. Foster
{"title":"LMRST-Sat:小型、高性价比的任务","authors":"C. Duncan, M. S. Dennis, A. Kalman, Kevin Anand Stein, Yonas Tesfaye, Bryan I-Ming Lin, E. Truong-Cao, C. Foster","doi":"10.1109/AERO.2010.5447018","DOIUrl":null,"url":null,"abstract":"The Communications, Tracking, and Radar Division at NASA's Jet Propulsion Laboratory (JPL) and the Space and Systems Development Lab (SSDL) at Stanford University are collaborating to fly a nanosat-class mission for costs usually associated with small technology development tasks, a few $100K. The mission hosts a JPL-developed Low Mass Radio Science Transponder (LMRST) on a university-class CubeSat bus as a satellite that occupies a total volume of two liters plus deployable antennas. In low earth orbit, the LMRST payload will provide a far-field source for calibration of Deep Space Network X-Band equipment in the form of an integer turnaround X-Band transponder with support for ranging modulation. The CubeSat bus provided by SSDL supplies power, structural support, and command and telemetry while on orbit. CubeSat development and operations are conducted as a student project.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LMRST-Sat: A small, high value-to-cost mission\",\"authors\":\"C. Duncan, M. S. Dennis, A. Kalman, Kevin Anand Stein, Yonas Tesfaye, Bryan I-Ming Lin, E. Truong-Cao, C. Foster\",\"doi\":\"10.1109/AERO.2010.5447018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Communications, Tracking, and Radar Division at NASA's Jet Propulsion Laboratory (JPL) and the Space and Systems Development Lab (SSDL) at Stanford University are collaborating to fly a nanosat-class mission for costs usually associated with small technology development tasks, a few $100K. The mission hosts a JPL-developed Low Mass Radio Science Transponder (LMRST) on a university-class CubeSat bus as a satellite that occupies a total volume of two liters plus deployable antennas. In low earth orbit, the LMRST payload will provide a far-field source for calibration of Deep Space Network X-Band equipment in the form of an integer turnaround X-Band transponder with support for ranging modulation. The CubeSat bus provided by SSDL supplies power, structural support, and command and telemetry while on orbit. CubeSat development and operations are conducted as a student project.\",\"PeriodicalId\":378029,\"journal\":{\"name\":\"2010 IEEE Aerospace Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2010.5447018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5447018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Communications, Tracking, and Radar Division at NASA's Jet Propulsion Laboratory (JPL) and the Space and Systems Development Lab (SSDL) at Stanford University are collaborating to fly a nanosat-class mission for costs usually associated with small technology development tasks, a few $100K. The mission hosts a JPL-developed Low Mass Radio Science Transponder (LMRST) on a university-class CubeSat bus as a satellite that occupies a total volume of two liters plus deployable antennas. In low earth orbit, the LMRST payload will provide a far-field source for calibration of Deep Space Network X-Band equipment in the form of an integer turnaround X-Band transponder with support for ranging modulation. The CubeSat bus provided by SSDL supplies power, structural support, and command and telemetry while on orbit. CubeSat development and operations are conducted as a student project.