基于计算流体力学、分组数据处理、人工神经网络和遗传算法的可变形襟翼二元机翼模型Pareto优化

H. Safikhani, M. Jamalinasab
{"title":"基于计算流体力学、分组数据处理、人工神经网络和遗传算法的可变形襟翼二元机翼模型Pareto优化","authors":"H. Safikhani, M. Jamalinasab","doi":"10.5829/ije.2018.31.04a.19","DOIUrl":null,"url":null,"abstract":"A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag (D) coefficients in wings are calculated. Afterward, for modeling L and D using grouped method of data handling (GMDH) type artificial neural networks, numerical data of the preceding step will be applied. Eventually, for Pareto based multi-objective optimization of two-element wing models with morphing flap using NSGA II algorithm, the modeling, which is accomplished by GMDH will be applied. It is shown that the achieved Pareto solution includes important design information on such wings.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms\",\"authors\":\"H. Safikhani, M. Jamalinasab\",\"doi\":\"10.5829/ije.2018.31.04a.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag (D) coefficients in wings are calculated. Afterward, for modeling L and D using grouped method of data handling (GMDH) type artificial neural networks, numerical data of the preceding step will be applied. Eventually, for Pareto based multi-objective optimization of two-element wing models with morphing flap using NSGA II algorithm, the modeling, which is accomplished by GMDH will be applied. It is shown that the achieved Pareto solution includes important design information on such wings.\",\"PeriodicalId\":416886,\"journal\":{\"name\":\"International journal of engineering. Transactions A: basics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of engineering. Transactions A: basics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2018.31.04a.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.04a.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用计算流体力学(CFD)技术、人工神经网络(ANN)和非支配排序遗传算法(NSGA II)对带变形襟翼的二元机翼模型进行了多目标优化。首先,利用CFD技术对各种带变形襟翼的二元机翼模型进行了数值求解,计算了机翼的升力系数和阻力系数。随后,使用分组数据处理方法(GMDH)型人工神经网络对L和D进行建模,将采用上一步的数值数据。最后,利用NSGA II算法对带变形襟翼的二元机翼模型进行Pareto多目标优化,并利用GMDH完成建模。结果表明,所得到的Pareto解包含了此类机翼的重要设计信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag (D) coefficients in wings are calculated. Afterward, for modeling L and D using grouped method of data handling (GMDH) type artificial neural networks, numerical data of the preceding step will be applied. Eventually, for Pareto based multi-objective optimization of two-element wing models with morphing flap using NSGA II algorithm, the modeling, which is accomplished by GMDH will be applied. It is shown that the achieved Pareto solution includes important design information on such wings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE) Composite Multi Wall Carbon Nano Tube Polydimethylsiloxane Membrane Bioreactor for Enhanced Bioethanol Production from Broomcorn Seeds Determining of Geotechnical Domain Based on Joint Density and Fault Orientation at Batu Hijau Mine,West Sumbawa-Indonesia (TECHNICAL NOTE) Bi-objective Build-to-order Supply Chain Problem with Customer Utility Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1