利用周氏假氨基酸组成一般形式的n端跨膜结构域信息预测植物中的高尔基蛋白

Yasen Jiao, Pufeng Du, Xiaoquan Su
{"title":"利用周氏假氨基酸组成一般形式的n端跨膜结构域信息预测植物中的高尔基蛋白","authors":"Yasen Jiao, Pufeng Du, Xiaoquan Su","doi":"10.1109/ISB.2014.6990759","DOIUrl":null,"url":null,"abstract":"Knowing the subcellular location of a protein is an important step in understanding its biological functions. In this paper, we developed a new method to identify whether a protein is a Golgi-resident protein or not in plant cells. We proposed to incorporate transmembrane domain information and six different kinds of physicochemical properties of amino acids in the general form of Chou's pseudo-amino acid compositions. By using SVM based classifiers, our method achieved over 90% prediction accuracy in a 5-fold cross validation, which is much better than the other state-of-the-art methods.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Golgi-resident proteins in plants by incorporating N-terminal transmembrane domain information in the general form of Chou's pseudoamino acid compositions\",\"authors\":\"Yasen Jiao, Pufeng Du, Xiaoquan Su\",\"doi\":\"10.1109/ISB.2014.6990759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowing the subcellular location of a protein is an important step in understanding its biological functions. In this paper, we developed a new method to identify whether a protein is a Golgi-resident protein or not in plant cells. We proposed to incorporate transmembrane domain information and six different kinds of physicochemical properties of amino acids in the general form of Chou's pseudo-amino acid compositions. By using SVM based classifiers, our method achieved over 90% prediction accuracy in a 5-fold cross validation, which is much better than the other state-of-the-art methods.\",\"PeriodicalId\":249103,\"journal\":{\"name\":\"2014 8th International Conference on Systems Biology (ISB)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2014.6990759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解蛋白质的亚细胞位置是了解其生物学功能的重要一步。本文提出了一种鉴定植物细胞中高尔基驻留蛋白的新方法。我们提出将跨膜结构域信息和氨基酸的六种不同的物理化学性质纳入Chou的伪氨基酸组成的一般形式中。通过使用基于SVM的分类器,我们的方法在5次交叉验证中获得了超过90%的预测准确率,这比其他最先进的方法要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Golgi-resident proteins in plants by incorporating N-terminal transmembrane domain information in the general form of Chou's pseudoamino acid compositions
Knowing the subcellular location of a protein is an important step in understanding its biological functions. In this paper, we developed a new method to identify whether a protein is a Golgi-resident protein or not in plant cells. We proposed to incorporate transmembrane domain information and six different kinds of physicochemical properties of amino acids in the general form of Chou's pseudo-amino acid compositions. By using SVM based classifiers, our method achieved over 90% prediction accuracy in a 5-fold cross validation, which is much better than the other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological characterization of housekeeping genes in human protein-protein interaction network The correlation and regression analysis on aerosol optical depth, ice cover and cloud cover in Greenland Sea A semi-tensor product approach for Probabilistic Boolean Networks VaccineWatch: a monitoring system of vaccine messages from social media data Evolution analysis for HA gene of human influenza A H3N2 virus (1990 – 2013)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1