Nagababu Andraju, G. Curtzwiler, Yun Ji, E. Kozliak, Prakash Ranganathan
{"title":"PFAS跟踪、检测和修复的机器学习模型综述","authors":"Nagababu Andraju, G. Curtzwiler, Yun Ji, E. Kozliak, Prakash Ranganathan","doi":"10.1109/eIT57321.2023.10187291","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are known for their persistence, toxicity, and potential to cause harm to human health and the environment. Traditional monitoring methods are often expensive and time-consuming. The paper provides a review of existing machine learning (ML) models for PFAS detection and treatment processes. The paper also highlights a ML workflow process for PFAS detection, remediation technologies, and the need for unified open-source database for PFAS assessment in water.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models for PFAS Tracking, Detection and Remediation: A Review\",\"authors\":\"Nagababu Andraju, G. Curtzwiler, Yun Ji, E. Kozliak, Prakash Ranganathan\",\"doi\":\"10.1109/eIT57321.2023.10187291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per- and polyfluoroalkyl substances (PFAS) are known for their persistence, toxicity, and potential to cause harm to human health and the environment. Traditional monitoring methods are often expensive and time-consuming. The paper provides a review of existing machine learning (ML) models for PFAS detection and treatment processes. The paper also highlights a ML workflow process for PFAS detection, remediation technologies, and the need for unified open-source database for PFAS assessment in water.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Models for PFAS Tracking, Detection and Remediation: A Review
Per- and polyfluoroalkyl substances (PFAS) are known for their persistence, toxicity, and potential to cause harm to human health and the environment. Traditional monitoring methods are often expensive and time-consuming. The paper provides a review of existing machine learning (ML) models for PFAS detection and treatment processes. The paper also highlights a ML workflow process for PFAS detection, remediation technologies, and the need for unified open-source database for PFAS assessment in water.