graphhie:仅在GPU上进行大规模异步图形遍历

Wei Han, Daniel Mawhirter, Bo Wu, Matthew Buland
{"title":"graphhie:仅在GPU上进行大规模异步图形遍历","authors":"Wei Han, Daniel Mawhirter, Bo Wu, Matthew Buland","doi":"10.1109/PACT.2017.41","DOIUrl":null,"url":null,"abstract":"Most GPU-based graph systems cannot handle large-scale graphs that do not fit in the GPU memory. The ever-increasing graph size demands a scale-up graph system, which can run on a single GPU with optimized memory access efficiency and well-controlled data transfer overhead. However, existing systems either incur redundant data transfers or fail to use shared memory. In this paper we present Graphie, a systemto efficiently traverse large-scale graphs on a single GPU. Graphie stores the vertex attribute data in the GPU memory and streams edge data asynchronously to the GPU for processing. Graphie's high performance relies on two renaming algorithms. The first algorithm renames the vertices so that the source vertices can be easily loaded to the shared memory to reduce global memory accesses. The second algorithm inserts virtual vertices into the vertex set to rename real vertices, which enables the use of a small boolean array to track active partitions. The boolean array also resides in shared memory and can be updated in constant time. The renaming algorithms do not introduce any extra overhead in the GPU memory or graph storage on disk. Graphie's runtime overlaps data transfer with kernel execution and reuses transferred data in the GPU memory. The evaluation of Graphie on 7 real-world graphs with up to 1.8 billion edgesdemonstrates substantial speedups over X-Stream, a state-of-theart edge-centric graph processing framework on the CPU, and GraphReduce, an out-of-memory graph processing systems on GPUs.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Graphie: Large-Scale Asynchronous Graph Traversals on Just a GPU\",\"authors\":\"Wei Han, Daniel Mawhirter, Bo Wu, Matthew Buland\",\"doi\":\"10.1109/PACT.2017.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most GPU-based graph systems cannot handle large-scale graphs that do not fit in the GPU memory. The ever-increasing graph size demands a scale-up graph system, which can run on a single GPU with optimized memory access efficiency and well-controlled data transfer overhead. However, existing systems either incur redundant data transfers or fail to use shared memory. In this paper we present Graphie, a systemto efficiently traverse large-scale graphs on a single GPU. Graphie stores the vertex attribute data in the GPU memory and streams edge data asynchronously to the GPU for processing. Graphie's high performance relies on two renaming algorithms. The first algorithm renames the vertices so that the source vertices can be easily loaded to the shared memory to reduce global memory accesses. The second algorithm inserts virtual vertices into the vertex set to rename real vertices, which enables the use of a small boolean array to track active partitions. The boolean array also resides in shared memory and can be updated in constant time. The renaming algorithms do not introduce any extra overhead in the GPU memory or graph storage on disk. Graphie's runtime overlaps data transfer with kernel execution and reuses transferred data in the GPU memory. The evaluation of Graphie on 7 real-world graphs with up to 1.8 billion edgesdemonstrates substantial speedups over X-Stream, a state-of-theart edge-centric graph processing framework on the CPU, and GraphReduce, an out-of-memory graph processing systems on GPUs.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

大多数基于GPU的图形系统不能处理不适合GPU内存的大规模图形。不断增长的图形大小需要一个缩放图形系统,它可以在单个GPU上运行,具有优化的内存访问效率和良好控制的数据传输开销。然而,现有的系统要么导致冗余数据传输,要么无法使用共享内存。在本文中,我们提出了graphhie,一个在单个GPU上有效遍历大规模图形的系统。Graphie将顶点属性数据存储在GPU内存中,并将边缘数据异步传输给GPU进行处理。graphhie的高性能依赖于两种重命名算法。第一种算法重命名顶点,以便可以轻松地将源顶点加载到共享内存中,以减少全局内存访问。第二种算法将虚拟顶点插入顶点集以重命名真实顶点,这允许使用一个小布尔数组来跟踪活动分区。布尔数组也驻留在共享内存中,可以在固定时间内更新。重命名算法不会在GPU内存或磁盘上的图形存储中引入任何额外的开销。graphhie的运行时将数据传输与内核执行重叠,并在GPU内存中重用传输的数据。graphhie在7个具有18亿个边的真实图形上的评估表明,它比X-Stream (CPU上最先进的以边为中心的图形处理框架)和GraphReduce (gpu上内存不足的图形处理系统)有显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphie: Large-Scale Asynchronous Graph Traversals on Just a GPU
Most GPU-based graph systems cannot handle large-scale graphs that do not fit in the GPU memory. The ever-increasing graph size demands a scale-up graph system, which can run on a single GPU with optimized memory access efficiency and well-controlled data transfer overhead. However, existing systems either incur redundant data transfers or fail to use shared memory. In this paper we present Graphie, a systemto efficiently traverse large-scale graphs on a single GPU. Graphie stores the vertex attribute data in the GPU memory and streams edge data asynchronously to the GPU for processing. Graphie's high performance relies on two renaming algorithms. The first algorithm renames the vertices so that the source vertices can be easily loaded to the shared memory to reduce global memory accesses. The second algorithm inserts virtual vertices into the vertex set to rename real vertices, which enables the use of a small boolean array to track active partitions. The boolean array also resides in shared memory and can be updated in constant time. The renaming algorithms do not introduce any extra overhead in the GPU memory or graph storage on disk. Graphie's runtime overlaps data transfer with kernel execution and reuses transferred data in the GPU memory. The evaluation of Graphie on 7 real-world graphs with up to 1.8 billion edgesdemonstrates substantial speedups over X-Stream, a state-of-theart edge-centric graph processing framework on the CPU, and GraphReduce, an out-of-memory graph processing systems on GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1