{"title":"基于视觉的微机器人纤维表征平台微机械臂三维标定","authors":"Yikun Xiong, M. von Essen, J. Hirvonen, P. Kallio","doi":"10.1109/3M-NANO.2012.6472968","DOIUrl":null,"url":null,"abstract":"Calibration is of great significance in the development of automatic micromanipulation systems. This paper presents a novel vision based procedure for three dimensional (3D) calibration of micromanipulators. Two major issues in the proposed calibration approach - vision system calibration and manipulator kinematic calibration - are discussed in details in this paper. Verification and evaluation experiments are conducted using a 3D micromanipulator in a microrobotic fiber characterization platform. The results demonstrate that the proposed calibration approach is able to reduce the pose error below 5 micrometers.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision based 3D calibration of micromanipulator in microrobotic fiber characterization platform\",\"authors\":\"Yikun Xiong, M. von Essen, J. Hirvonen, P. Kallio\",\"doi\":\"10.1109/3M-NANO.2012.6472968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calibration is of great significance in the development of automatic micromanipulation systems. This paper presents a novel vision based procedure for three dimensional (3D) calibration of micromanipulators. Two major issues in the proposed calibration approach - vision system calibration and manipulator kinematic calibration - are discussed in details in this paper. Verification and evaluation experiments are conducted using a 3D micromanipulator in a microrobotic fiber characterization platform. The results demonstrate that the proposed calibration approach is able to reduce the pose error below 5 micrometers.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vision based 3D calibration of micromanipulator in microrobotic fiber characterization platform
Calibration is of great significance in the development of automatic micromanipulation systems. This paper presents a novel vision based procedure for three dimensional (3D) calibration of micromanipulators. Two major issues in the proposed calibration approach - vision system calibration and manipulator kinematic calibration - are discussed in details in this paper. Verification and evaluation experiments are conducted using a 3D micromanipulator in a microrobotic fiber characterization platform. The results demonstrate that the proposed calibration approach is able to reduce the pose error below 5 micrometers.