Talk2Face:一个统一的基于序列的框架,用于多种人脸生成和分析任务

Yudong Li, Xianxu Hou, Zhe Zhao, Linlin Shen, Xuefeng Yang, Kimmo Yan
{"title":"Talk2Face:一个统一的基于序列的框架,用于多种人脸生成和分析任务","authors":"Yudong Li, Xianxu Hou, Zhe Zhao, Linlin Shen, Xuefeng Yang, Kimmo Yan","doi":"10.1145/3503161.3548205","DOIUrl":null,"url":null,"abstract":"Facial analysis is an important domain in computer vision and has received extensive research attention. For numerous downstream tasks with different input/output formats and modalities, existing methods usually design task-specific architectures and train them using face datasets collected in the particular task domain. In this work, we proposed a single model, Talk2Face, to simultaneously tackle a large number of face generation and analysis tasks, e.g. text guided face synthesis, face captioning and age estimation. Specifically, we cast different tasks into a sequence-to-sequence format with the same architecture, parameters and objectives. While text and facial images are tokenized to sequences, the annotation labels of faces for different tasks are also converted to natural languages for unified representation. We collect a set of 2.3M face-text pairs from available datasets across different tasks, to train the proposed model. Uniform templates are then designed to enable the model to perform different downstream tasks, according to the task context and target. Experiments on different tasks show that our model achieves better face generation and caption performances than SOTA approaches. On age estimation and multi-attribute classification, our model reaches competitive performance with those models specially designed and trained for these particular tasks. In practice, our model is much easier to be deployed to different facial analysis related tasks. Code and dataset will be available at https://github.com/ydli-ai/Talk2Face.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Talk2Face: A Unified Sequence-based Framework for Diverse Face Generation and Analysis Tasks\",\"authors\":\"Yudong Li, Xianxu Hou, Zhe Zhao, Linlin Shen, Xuefeng Yang, Kimmo Yan\",\"doi\":\"10.1145/3503161.3548205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial analysis is an important domain in computer vision and has received extensive research attention. For numerous downstream tasks with different input/output formats and modalities, existing methods usually design task-specific architectures and train them using face datasets collected in the particular task domain. In this work, we proposed a single model, Talk2Face, to simultaneously tackle a large number of face generation and analysis tasks, e.g. text guided face synthesis, face captioning and age estimation. Specifically, we cast different tasks into a sequence-to-sequence format with the same architecture, parameters and objectives. While text and facial images are tokenized to sequences, the annotation labels of faces for different tasks are also converted to natural languages for unified representation. We collect a set of 2.3M face-text pairs from available datasets across different tasks, to train the proposed model. Uniform templates are then designed to enable the model to perform different downstream tasks, according to the task context and target. Experiments on different tasks show that our model achieves better face generation and caption performances than SOTA approaches. On age estimation and multi-attribute classification, our model reaches competitive performance with those models specially designed and trained for these particular tasks. In practice, our model is much easier to be deployed to different facial analysis related tasks. Code and dataset will be available at https://github.com/ydli-ai/Talk2Face.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人脸分析是计算机视觉的一个重要研究领域,受到了广泛的关注。对于具有不同输入/输出格式和模式的众多下游任务,现有方法通常是设计特定于任务的架构,并使用在特定任务域中收集的人脸数据集对其进行训练。在这项工作中,我们提出了一个单一的模型,Talk2Face,同时处理大量的人脸生成和分析任务,如文本引导的人脸合成,人脸字幕和年龄估计。具体来说,我们将不同的任务转换为具有相同架构、参数和目标的序列到序列格式。在将文本和面部图像标记为序列的同时,还将不同任务的面部标注标签转换为自然语言进行统一表示。我们从不同任务的可用数据集中收集了一组230万对人脸文本对,以训练所提出的模型。然后设计统一模板,使模型能够根据任务上下文和目标执行不同的下游任务。在不同任务上的实验表明,我们的模型比SOTA方法获得了更好的人脸生成和标题性能。在年龄估计和多属性分类方面,我们的模型与那些专门为这些特定任务设计和训练的模型达到了竞争性能。在实践中,我们的模型更容易部署到不同的面部分析相关任务中。代码和数据集可在https://github.com/ydli-ai/Talk2Face上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Talk2Face: A Unified Sequence-based Framework for Diverse Face Generation and Analysis Tasks
Facial analysis is an important domain in computer vision and has received extensive research attention. For numerous downstream tasks with different input/output formats and modalities, existing methods usually design task-specific architectures and train them using face datasets collected in the particular task domain. In this work, we proposed a single model, Talk2Face, to simultaneously tackle a large number of face generation and analysis tasks, e.g. text guided face synthesis, face captioning and age estimation. Specifically, we cast different tasks into a sequence-to-sequence format with the same architecture, parameters and objectives. While text and facial images are tokenized to sequences, the annotation labels of faces for different tasks are also converted to natural languages for unified representation. We collect a set of 2.3M face-text pairs from available datasets across different tasks, to train the proposed model. Uniform templates are then designed to enable the model to perform different downstream tasks, according to the task context and target. Experiments on different tasks show that our model achieves better face generation and caption performances than SOTA approaches. On age estimation and multi-attribute classification, our model reaches competitive performance with those models specially designed and trained for these particular tasks. In practice, our model is much easier to be deployed to different facial analysis related tasks. Code and dataset will be available at https://github.com/ydli-ai/Talk2Face.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1