{"title":"180nm CMOS软充电开关电容级合并两级功率变换器","authors":"R. Pilawa-Podgurski, D. Perreault","doi":"10.1109/ESSCIRC.2011.6045011","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a merged two-stage dc-dc power converter for low-voltage power delivery. By separating the transformation and regulation function of a dc-dc power converter into two stages, both large voltage transformation and high control bandwidth can be achieved. We show how the switched-capacitor stage can operate under soft charging conditions by suitable control and integration (merging) of the two stages. This mode of operation enables improved efficiency and/or power density in the switched-capacitor stage. A 5-to-1 V, 0.8 W integrated dc-dc converter has been developed in 180 nm CMOS. The converter achieves a peak efficiency of 81%, with a regulation stage switching frequency of 10 MHz.","PeriodicalId":239979,"journal":{"name":"2011 Proceedings of the ESSCIRC (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"Merged two-stage power converter with soft charging switched-capacitor stage in 180 nm CMOS\",\"authors\":\"R. Pilawa-Podgurski, D. Perreault\",\"doi\":\"10.1109/ESSCIRC.2011.6045011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a merged two-stage dc-dc power converter for low-voltage power delivery. By separating the transformation and regulation function of a dc-dc power converter into two stages, both large voltage transformation and high control bandwidth can be achieved. We show how the switched-capacitor stage can operate under soft charging conditions by suitable control and integration (merging) of the two stages. This mode of operation enables improved efficiency and/or power density in the switched-capacitor stage. A 5-to-1 V, 0.8 W integrated dc-dc converter has been developed in 180 nm CMOS. The converter achieves a peak efficiency of 81%, with a regulation stage switching frequency of 10 MHz.\",\"PeriodicalId\":239979,\"journal\":{\"name\":\"2011 Proceedings of the ESSCIRC (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Proceedings of the ESSCIRC (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2011.6045011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2011.6045011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140
摘要
本文介绍了一种用于低压输电的合并两级dc-dc电源变换器。将dc-dc功率变换器的变换和调节功能分为两级,既可以实现大电压变换,又可以实现高控制带宽。我们展示了如何通过适当的控制和两个阶段的集成(合并)来实现开关电容器阶段在软充电条件下的工作。这种操作模式可以提高开关电容器阶段的效率和/或功率密度。研制了一种5 to 1 V、0.8 W的集成dc-dc变换器。该变换器的峰值效率为81%,调节级开关频率为10 MHz。
Merged two-stage power converter with soft charging switched-capacitor stage in 180 nm CMOS
In this paper, we introduce a merged two-stage dc-dc power converter for low-voltage power delivery. By separating the transformation and regulation function of a dc-dc power converter into two stages, both large voltage transformation and high control bandwidth can be achieved. We show how the switched-capacitor stage can operate under soft charging conditions by suitable control and integration (merging) of the two stages. This mode of operation enables improved efficiency and/or power density in the switched-capacitor stage. A 5-to-1 V, 0.8 W integrated dc-dc converter has been developed in 180 nm CMOS. The converter achieves a peak efficiency of 81%, with a regulation stage switching frequency of 10 MHz.