基于迁移学习的脑电运动图像信号多类分类

Chun-Yu Chen, Wei-Jen Wang, Chun-Chuan Chen
{"title":"基于迁移学习的脑电运动图像信号多类分类","authors":"Chun-Yu Chen, Wei-Jen Wang, Chun-Chuan Chen","doi":"10.1109/ICASI55125.2022.9774441","DOIUrl":null,"url":null,"abstract":"Multiclass Classification of EEG signal is essential for brain computer interface (BCI) applications but extremely time consuming. We proposed a subject-weighted adaptive transfer learning method in conjunction with MLP and CNN classifiers for fast classification of multiclass EEG dataset.Analytic results show that CNN generally outperforms MLP in this multi-class classification. The use of transfer learning is efficient for building the predictive model without decreasing the accuracy and 2D CNN is more robust to between-subject variabilities.","PeriodicalId":190229,"journal":{"name":"2022 8th International Conference on Applied System Innovation (ICASI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiclass Classification of EEG Motor Imagery Signals Based on Transfer Learning\",\"authors\":\"Chun-Yu Chen, Wei-Jen Wang, Chun-Chuan Chen\",\"doi\":\"10.1109/ICASI55125.2022.9774441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiclass Classification of EEG signal is essential for brain computer interface (BCI) applications but extremely time consuming. We proposed a subject-weighted adaptive transfer learning method in conjunction with MLP and CNN classifiers for fast classification of multiclass EEG dataset.Analytic results show that CNN generally outperforms MLP in this multi-class classification. The use of transfer learning is efficient for building the predictive model without decreasing the accuracy and 2D CNN is more robust to between-subject variabilities.\",\"PeriodicalId\":190229,\"journal\":{\"name\":\"2022 8th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI55125.2022.9774441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI55125.2022.9774441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑电信号的多类分类是脑机接口(BCI)应用的必要条件,但非常耗时。针对多类脑电数据的快速分类问题,提出了一种结合MLP和CNN分类器的主题加权自适应迁移学习方法。分析结果表明,在这种多类分类中,CNN总体上优于MLP。使用迁移学习在不降低准确率的情况下有效地构建了预测模型,并且二维CNN对主体间变量具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiclass Classification of EEG Motor Imagery Signals Based on Transfer Learning
Multiclass Classification of EEG signal is essential for brain computer interface (BCI) applications but extremely time consuming. We proposed a subject-weighted adaptive transfer learning method in conjunction with MLP and CNN classifiers for fast classification of multiclass EEG dataset.Analytic results show that CNN generally outperforms MLP in this multi-class classification. The use of transfer learning is efficient for building the predictive model without decreasing the accuracy and 2D CNN is more robust to between-subject variabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments on Mechanical Behavior and Electrical Conductivity of Au/Ni-Coated PMMA-Core Composite Particle During Micro Compression Testing Application of Augmented Reality for Aviation Equipment Inspection and Maintenance Training Analysis of electrical properties in MOS structure with a low surface roughness Al2O3-doped ZnO film as gate oxide A Study on Missing Data Imputation Methods for Improving Hourly Solar Dataset Interactive Visualization System of 3-D digital Elevation Model For Mountain Collapse Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1