MIMO-OFDM系统的有效半盲子空间信道估计

Abdelhamid Ladaycia, K. Abed-Meraim, Anissa Zergaïnoh-Mokraoui, A. Belouchrani
{"title":"MIMO-OFDM系统的有效半盲子空间信道估计","authors":"Abdelhamid Ladaycia, K. Abed-Meraim, Anissa Zergaïnoh-Mokraoui, A. Belouchrani","doi":"10.23919/EUSIPCO.2018.8553550","DOIUrl":null,"url":null,"abstract":"This paper deals with channel estimation for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) wireless communications systems. Herein, we propose a semi-blind (SB) subspace channel estimation technique for which an identifiability result is first established for the subspace based criterion. Our algorithm adopts the MIMO-OFDM system model without cyclic prefix and takes advantage of the circulant property of the channel matrix to achieve lower computational complexity and to accelerate the algorithm's convergence by generating a group of sub vectors from each received OFDM symbol. Then, through simulations, we show that the proposed method leads to a significant performance gain as compared to the existing SB subspace methods as well as to the classical last-squares channel estimator.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Semi-Blind Subspace Channel Estimation for MIMO-OFDM System\",\"authors\":\"Abdelhamid Ladaycia, K. Abed-Meraim, Anissa Zergaïnoh-Mokraoui, A. Belouchrani\",\"doi\":\"10.23919/EUSIPCO.2018.8553550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with channel estimation for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) wireless communications systems. Herein, we propose a semi-blind (SB) subspace channel estimation technique for which an identifiability result is first established for the subspace based criterion. Our algorithm adopts the MIMO-OFDM system model without cyclic prefix and takes advantage of the circulant property of the channel matrix to achieve lower computational complexity and to accelerate the algorithm's convergence by generating a group of sub vectors from each received OFDM symbol. Then, through simulations, we show that the proposed method leads to a significant performance gain as compared to the existing SB subspace methods as well as to the classical last-squares channel estimator.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了多输入多输出正交频分复用(MIMO-OFDM)无线通信系统的信道估计问题。本文提出了一种半盲子空间信道估计技术,该技术首先建立了基于子空间准则的可辨识性结果。该算法采用MIMO-OFDM系统模型,没有循环前缀,利用信道矩阵的循环特性,通过对接收到的每个OFDM符号生成一组子向量,降低了算法的计算复杂度,加快了算法的收敛速度。然后,通过仿真,我们表明,与现有的SB子空间方法以及经典的最后平方信道估计器相比,所提出的方法具有显著的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Semi-Blind Subspace Channel Estimation for MIMO-OFDM System
This paper deals with channel estimation for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) wireless communications systems. Herein, we propose a semi-blind (SB) subspace channel estimation technique for which an identifiability result is first established for the subspace based criterion. Our algorithm adopts the MIMO-OFDM system model without cyclic prefix and takes advantage of the circulant property of the channel matrix to achieve lower computational complexity and to accelerate the algorithm's convergence by generating a group of sub vectors from each received OFDM symbol. Then, through simulations, we show that the proposed method leads to a significant performance gain as compared to the existing SB subspace methods as well as to the classical last-squares channel estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1