基于分割的极化SAR图像最优分类

P. Lombardo, C. J. Oliver
{"title":"基于分割的极化SAR图像最优分类","authors":"P. Lombardo, C. J. Oliver","doi":"10.1109/NRC.2002.999684","DOIUrl":null,"url":null,"abstract":"The paper presents an optimised polarimetric segmentation technique for synthetic aperture radar (SAR) images, based on a generalised maximum likelihood approach. A full theoretical derivation is presented, together with a closed form analytical performance evaluation. The technique is compared to other known polarimetric segmentation schemes by application to a polarimetric SAR image of agricultural areas. A complete characterisation of the technique is provided in terms of polarimetric sensitivity and memory requirements.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Optimal classification of polarimetric SAR images using segmentation\",\"authors\":\"P. Lombardo, C. J. Oliver\",\"doi\":\"10.1109/NRC.2002.999684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an optimised polarimetric segmentation technique for synthetic aperture radar (SAR) images, based on a generalised maximum likelihood approach. A full theoretical derivation is presented, together with a closed form analytical performance evaluation. The technique is compared to other known polarimetric segmentation schemes by application to a polarimetric SAR image of agricultural areas. A complete characterisation of the technique is provided in terms of polarimetric sensitivity and memory requirements.\",\"PeriodicalId\":448055,\"journal\":{\"name\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2002.999684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种基于广义极大似然方法的合成孔径雷达(SAR)图像极化分割优化技术。给出了完整的理论推导,并给出了封闭形式的分析性能评价。该技术与其他已知的极化分割方案进行了比较,应用于农业地区的极化SAR图像。在极化灵敏度和存储要求方面提供了该技术的完整特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal classification of polarimetric SAR images using segmentation
The paper presents an optimised polarimetric segmentation technique for synthetic aperture radar (SAR) images, based on a generalised maximum likelihood approach. A full theoretical derivation is presented, together with a closed form analytical performance evaluation. The technique is compared to other known polarimetric segmentation schemes by application to a polarimetric SAR image of agricultural areas. A complete characterisation of the technique is provided in terms of polarimetric sensitivity and memory requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acceleration compensation by matched filtering Model-based adaptive detection and DOA estimation using separated sub-arrays Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration A new constrained joint-domain localized approach for airborne radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1